939 research outputs found
Cryptanalysis and Improvement of the Robust User Authentication Scheme for Wireless Sensor Networks
Wireless sensor networks are widely used in industrial process control, human health care, environmental control, vehicular tracking and battlefield surveillance, etc. A wireless sensor network consists of lots of sensor nodes and a gateway node. The sensor node usually communicates with the gateway node and users over an ad hoc wireless network. However, due to the open environments, the wireless sensor networks are vulnerable to variety of security threats. Thus, it is a critical issue to adopt a suitable authentication mechanism for wireless sensor networks to enhance security. In 2009, Vaidya et al. proposed a robust user authentication schemes for wireless sensor networks. In this article, we will show that their scheme is vulnerable to the guessing attack and the impersonation attack. Since it needs a secure channel for communications in password changing phase, their scheme is also inconvenient and expensive for users to update passwords. We also propose an improved scheme to remedy the flaws. The improved scheme withstands the replay attack and off-line guessing attack, and the users can freely update their passwords via public channels
Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires
Abstract ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn 1Àx Mg x O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn 2+ ions are successfully substituted by Mg 2+ ions in the ZnO lattice. In Raman-scattering studies, the change of E 2 (high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm À1 are presumably attributed to the Mg-related vibrational modes
Intraprostatic injection of botulinum toxin type- A relieves bladder outlet obstruction in human and induces prostate apoptosis in dogs
BACKGROUND: With the increasing interest with botulinum toxin – A (BTX-A) application in the lower urinary tract, we investigated the BTX-A effects on the canine prostate and also in men with bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH). METHODS: Transperineal injection into the prostate using transrectal ultrasound (TRUS) was performed throughout the study. Saline with or without 100 U of BTX-A was injected into mongrel dogs prostate. One or 3 months later, the prostate was harvested for morphologic and apoptotic study. In addition, eight BPH patients refractory to α-blockers were treated with ultrasound guided intraprostatic injection of 200 U of BTX-A. RESULTS: In the BTX-A treated dogs, atrophy and diffuse apoptosis was observed with H&E stain and TUNEL stain at 1 and 3 months. Clinically, the mean prostate volume, symptom score, and quality of life index were significantly reduced by 18.8%, 73.1%, and 61.5% respectively. Maximal flow rate significantly increased by 72.0%. CONCLUSION: Intraprostatic BTX-A injection induces prostate apotosis in dogs and relieves BOO in humans. It is therefore a promising alternative treatment for refractory BOO due to BPH
Transcriptome profiling of the fifth-stage larvae of Angiostrongylus cantonensis by next-generation sequencing
Angiostrongylus cantonensis is an important zoonotic nematode. It is the causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. However, information of this parasite at the genomic level is very limited. In the present study, the transcriptomic profiles of the fifth-stage larvae (L5) of A. cantonensis were investigated by next-generation sequencing (NGS). In the NGS database established from the larvae isolated from the brain of Sprague–Dawley rats, 31,487 unique genes with a mean length of 617 nucleotides were assembled. These genes were found to have a 46.08 % significant similarity to Caenorhabditis elegans by BLASTx. They were then compared with the expressed sequence tags of 18 other nematodes, and significant matches of 36.09–59.12 % were found. Among these genes, 3,338 were found to participate in 124 Kyoto Encyclopedia of Genes and Genomes pathways. These pathways included 1,514 metabolisms, 846 genetic information processing, 358 environmental information processing, 264 cellular processes, and 91 organismal systems. Analysis of 30,816 sequences with the gene ontology database indicated that their annotations included 5,656 biological processes (3,364 cellular processes, 3,061 developmental processes, and 3,191 multicellular organismal processes), 7,218 molecular functions (4,597 binding and 3,084 catalytic activities), and 4,719 cellular components (4,459 cell parts and 4,466 cells). Moreover, stress-related genes (112 heat stress and 33 oxidation stress) and genes for proteases (159) were not uncommon. This study is the first NGS-based study to set up a transcriptomic database of A. cantonensis L5. The results provide new insights into the survival, development, and host–parasite interactions of this blood-feeding nematode. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00436-013-3495-z) contains supplementary material, which is available to authorized users
Insights into Chinese perspectives on do-not-resuscitate (DNR) orders from an examination of DNR order form completeness for cancer patients
PURPOSE: Discussing end-of-life care with patients is often considered taboo, and signing a do-not-resuscitate (DNR) order is difficult for most patients, especially in Chinese culture. This study investigated distributions and details related to the signing of DNR orders, as well as the completeness of various DNR order forms. METHODS: Retrospective chart reviews were performed. We screened all charts from a teaching hospital in Taiwan for patients who died of cancer during the period from January 2010 to December 2011. A total of 829 patient records were included in the analysis. The details of the DNR order forms were recorded. RESULTS: The DNR order signing rate was 99.8 %. The percentage of DNR orders signed by patients themselves (DNR-P) was 22.6 %, while the percentage of orders signed by surrogates (DNR-S) was 77.2 %. The percentage of signed DNR forms that were completely filled out was 78.4 %. The percentage of DNR-S forms that were completed was 81.7 %, while the percentage of DNR-P forms that were completely filled out was only 67.6 %. CONCLUSION: Almost all the cancer patients had a signed DNR order, but for the majority of them, the order was signed by a surrogate. Negative attitudes of discussing death from medical professionals and/or the family members of patients may account for the higher number of signed DNR-S orders than DNR-P orders. Moreover, early obtainment of signed DNR orders should be sought, as getting the orders earlier could promote the quality of end-of-life care, especially in non-oncology wards
Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis
The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains. The Red1–SUMO chain interaction is dispensable for the initiation of meiotic DNA recombination, but it is essential for Tel1- and Mec1-dependent Hop1 phosphorylation, which ensures IH recombination by preventing the inter-sister chromatid DNA repair pathway. Our results also indicate that Red1 and Zip1 may directly sandwich the SUMO chains to mediate SC assembly. We suggest that Red1 and SUMO chains function together to couple homologous recombination and Mec1–Tel1 kinase activation with chromosome synapsis during yeast meiosis
- …