4,487 research outputs found
The Spitzer c2d Survey Of Nearby Dense Cores. VII. Chemistry And Dynamics In L43
We present results from the Spitzer Space Telescope and molecular line observations of nine species toward the dark cloud L43. The Spitzer images and molecular line maps suggest that it has a starless core and a Class I protostar evolving in the same environment. CO depletion is seen in both sources, and DCO(+) lines are stronger toward the starless core. With a goal of testing the chemical characteristics from pre- to protostellar stages, we adopt an evolutionary chemical model to calculate the molecular abundances and compare with our observations. Among the different model parameters we tested, the best-fit model suggests a longer total timescale at the pre-protostellar stage, but with faster evolution at the later steps with higher densities.NSF AST-0307250, AST0607793NASA NNX07AJ72GNational Research Foundation of Korea (NRF) government (MEST) 2009-0062865KOSEF R012007- 000-20336-0Astronom
Improved real-time imaging spectrometer
An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns
Single-Dirac-Cone topological surface states in TlBiSe2 class of Topological Insulators
We have investigated several strong spin-orbit coupling ternary chalcogenides
related to the (Pb,Sn)Te series of compounds. Our first-principles calculations
predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and
TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We
identify the specific surface termination that realizes the single Dirac cone
through first-principles surface state computations. This termination minimizes
effects of dangling bonds making it favorable for photoemission (ARPES)
experiments. Our analysis predicts that thin films of these materials would
harbor novel 2D quantum spin Hall states, and support odd-parity topological
superconductivity. For a related work also see arXiv:1003.2615v1. Experimental
ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March
201
Origin of electron-hole asymmetry in the scanning tunneling spectrum of
We have developed a material specific theoretical framework for modelling
scanning tunneling spectroscopy (STS) of high temperature superconducting
materials in the normal as well as the superconducting state. Results for
(Bi2212) show clearly that the tunneling process
strongly modifies the STS spectrum from the local density of states (LDOS) of
the orbital of Cu. The dominant tunneling channel to the surface
Bi involves the orbitals of the four neighbouring Cu atoms. In
accord with experimental observations, the computed spectrum displays a
remarkable asymmetry between the processes of electron injection and
extraction, which arises from contributions of Cu and other orbitals
to the tunneling current.Comment: 5 pages, 4 figures, published in PR
Multi-dimensional combustor flowfield analyses in gas-gas rocket engine
The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustions processes. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LeRC. Detailed computational modeling requires the application of the full three-dimensional Navier Stokes equations, coupled with species diffusion equations. The numerical procedure is performed on both time-marching and time-accurate algorithms and using an LU approximate factorization in time, flux split upwinding differencing in space. The emphasis in this paper is focused on using numerical analysis to understand detailed combustor flowfields, including the shear layer dynamics created between fuel film cooling and the core gas in the vicinity on the nearby combustor wall; the integrity and effectiveness of the coolant film; three-dimensional fuel jets injection/mixing/combustion characteristics; and their impacts on global engine performance
A Codazzi-like equation and the singular set for smooth surfaces in the Heisenberg group
In this paper, we study the structure of the singular set for a
smooth surface in the -dimensional Heisenberg group . We
discover a Codazzi-like equation for the -area element along the
characteristic curves on the surface. Information obtained from this ordinary
differential equation helps us to analyze the local configuration of the
singular set and the characteristic curves. In particular, we can estimate the
size and obtain the regularity of the singular set. We understand the global
structure of the singular set through a Hopf-type index theorem. We also
justify that Codazzi-like equation by proving a fundamental theorem for local
surfaces in .Comment: 64 pages, 17 figure
Significance and applications of Froude and Reynolds numbers as criteria for similitude
CER59HKL20.June 1959.Includes bibliographical references (pages 33-34)
Developing, Using, and Interacting in the Flipped Learning Movement: Gaps among Subject Areas
The purpose of this paper is to investigate the current video collection of an open-access video website (TED-Ed). The research questions focus on its content as evidence of development, its viewership as evidence of use, and flipping as evidence of interaction in informal learning. In late September 2013, 686 video lessons were posted on the TED-Ed website that spanned 12 academic subject categories and 60 academic subject subcategories, as labeled and sorted on the TED-Ed website itself. The findings of the analysis of the TED-Ed video collection indicate several gaps in the humanities, social science, and natural science academic areas in terms of the number of video lessons and viewership. Despite the gaps in the numbers of video lessons and the viewership across those three academic areas, the areas have very similar averages of daily flipped lessons. The future research agenda should focus on the motivation of viewers to create flipped lessons as evidence of learning in an open learning environment
- …