274 research outputs found

    Protection of the Extracts of Lentinus edodes Mycelia against Carbon-Tetrachloride-Induced Hepatic Injury in Rats

    Get PDF
    Lentinus edodes is the medicinal macrofungus showing potential for therapeutic applications in infectious disorders including hepatitis. In an attempt to develop the agent for handling hepatic injury, we used the extracts of Lentinus edodes mycelia (LEM) to screen the effect on hepatic injury in rats induced by carbon tetrachloride (CCl4). Intraperitoneal administration of CCl4 not only increased plasma glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) but also decreased hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels in rats. Similar to the positive control silymarin, oral administration (three times daily) of this product (LEM) for 8 weeks significantly reduced plasma GOT and GPT. Also, the activities of antioxidant enzymes of SOD and GPx were elevated by LEM. in liver from CCl4-treated rats, indicating that mycelium can increase antioxidant-like activity. Moreover, the hepatic mRNA and protein levels of SOD and GPx were both markedly raised by LEM. The obtained results suggest that oral administration of the extracts of Lentinus edodes mycelia (LEM) has the protective effect against CCl4-induced hepatic injury in rats, mainly due to an increase in antioxidant-like action

    Prostatic Relaxation Induced by Loperamide Is Reduced in Spontaneously Hypertensive Rats

    Get PDF
    This paper shows a new finding about the decrease of relaxative response to loperamide in prostate of spontaneously hypertensive rats (SHR) as compare to normal rats (WKY). Authors demonstrated the reduction of ATP-sensitive potassium channels is resposible for this change using immunoblotting analysis and the decrease of action induced by diazoxide. This view is not mentioned before and is the first one reporting this result

    Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat) was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve.</p> <p>Methods</p> <p>Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior.</p> <p>Results</p> <p>It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-δ fiber in adult dorsal root ganglions (DRGs) were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia.</p> <p>Conclusions</p> <p>The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-δ fiber of adult DRG neurons.</p

    Alteration of Loperamide-Induced Prostate Relaxation in High-Fat Diet-Fed Rats

    Get PDF
    Objective. To investigate the change of loperamide-induced prostate relaxation in rats fed with high-fat diet (HFD). Materials and Methods. Adult male Wistar rats were divided into 2 groups: (1) control rats fed with normal chow and (2) rats fed with HFD for 6 months. The prostate was removed for histology study. Isolated prostate strips were hung in organ bath and precontracted with 1 μmol/L phenylephrine or 50 mmol/L KCl. The relaxation responses to loperamide 0.1 to 10 μmol/L were recorded. Western blotting analyses were performed for prostate μ-opioid receptors (MOR) and ATP-sensitive potassium (KATP) channel proteins: sulfonylurea receptor (SUR) and inwardly rectifying potassium channel (Kir) 6.2 subunits. Results. Body weight, prostate weight, plasma levels of glucose, insulin, triglyceride, and cholesterol, as well as systolic blood pressure, were significantly increased in the HFD rats. Histology showed prostatic hyperplasia in the HFD rat prostate. Prostatic relaxation induced by loperamide was markedly reduced in HFD when compared to the control. Protein expressions of MOR, SUR, and Kir 6.2 were decreased in HFD-fed rats. Conclusion. Loperamide-induced prostate relaxation is decreased in HFD rats due to reduced MOR and KATP channel expressions

    Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells.</p> <p>Method</p> <p>In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique.</p> <p>Results</p> <p>TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis.</p> <p>Conclusions</p> <p>These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.</p

    Molecular Imaging, Pharmacokinetics, and Dosimetry of 111In-AMBA in Human Prostate Tumor-Bearing Mice

    Get PDF
    Molecular imaging with promise of personalized medicine can provide patient-specific information noninvasively, thus enabling treatment to be tailored to the specific biological attributes of both the disease and the patient. This study was to investigate the characterization of DO3A-CH2CO-G-4-aminobenzoyl-Q-W-A-V-G-H-L-M-NH2 (AMBA) in vitro, MicroSPECT/CT imaging, and biological activities of 111In-AMBA in PC-3 prostate tumor-bearing SCID mice. The uptake of 111In-AMBA reached highest with 3.87 ± 0.65% ID/g at 8 h. MicroSPECT/CT imaging studies suggested that the uptake of 111In-AMBA was clearly visualized between 8 and 48 h postinjection. The distribution half-life (t1/2α) and the elimination half-life (t1/2β) of 111In-AMBA in mice were 1.53 h and 30.7 h, respectively. The Cmax and AUC of 111In-AMBA were 7.57% ID/g and 66.39 h∗% ID/g, respectively. The effective dose appeared to be 0.11 mSv/MBq−1. We demonstrated a good uptake of 111In-AMBA in the GRPR-overexpressed PC-3 tumor-bearing SCID mice. 111In-AMBA is a safe, potential molecular image-guided diagnostic agent for human GRPR-positive tumors, ranging from simple and straightforward biodistribution studies to improve the efficacy of combined modality anticancer therapy

    A product-mix decision model using green manufacturing technologies under activity-based costing

    Get PDF
    Theory of constraints (TOC) Product-mix decision Mathematical programming approach a b s t r a c t The purpose of this study is to assess how the integration of activity-based costing (ABC) and the theory of constraints (TOC), as well as the application of a mixed-integer programming (MIP) model, can assist in making decisions about product-mix using green manufacturing technologies (GMTs). This study proposes a mathematical programming model to analyze the profitability of a product-mix decision based on the ABC and TOC, with the adoption of new GMTs. Using a numerical example from a metal component parts manufacturer in the automotive industry, the findings of this study provide insight into the value of mathematical programming approaches for GMTs investment and product-mix decision making based on ABC systems while simultaneously improving the value of green manufacturing technology investments

    Sonoporation-mediated gene transfer into adult rat dorsal root ganglion cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene transfer into many cell types has been successfully used to develop alternative and adjunct approaches to conventional medical treatment. However, effective transfection of postmitotic neurons remains a challenge. The aim of this study was to develop a method for gene transfer into rat primary dorsal root ganglion neurons using sonoporation.</p> <p>Methods</p> <p>Dissociated cells from adult rat dorsal root ganglion (DRG) cells were sonicated for 1-8 s at 2.5-10 W to determine the optimal ultrasound duration and power for gene transfection and cell survival. Transfection efficiency was compared between sonoporation, liposome and lentiviral vector gene transfer techniques.</p> <p>Results</p> <p>The optimum ultrasound intensity was 5 W for 2 s and yielded an efficiency of gene transfection of 31% and a survival rate of 35%.</p> <p>Conclusions</p> <p>Sonoporation can be optimized to minimize cell death and yield a high percentage of transfected neurons and that this technique can be easily applied to primary cultures of rat dorsal root ganglion neurons.</p

    Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Get PDF
    BACKGROUND: Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. METHODS: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. RESULTS: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. CONCLUSIONS: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress

    Effects of HIP Treatment on the Microstructure of Cr50-Si50 Target

    Get PDF
    Hot Isostatic Pressing (HIP) is a process that uniquely combines higher pressure and temperature to produce materials and parts with substantially better properties than those fabricated by other methods. Commercial as-hp (hot pressing) treated Cr50-Si50 targets are used throughout this study. The aim of this paper is to discuss the methods and to find a suitable HIP treatment for the as-hp treated Cr50-Si50 target. Otherwise, we also to find the effects of microstructure on the mechanical properties of HIP treated Cr50-Si50 target. To evaluate the effects on microstructure and properties of the Cr50-Si50 target by HIP process, SEM, TEM and porosity, density inspections were performed. The experiment results show that HIP treatment at 1373 K under the pressure of 175 MPa and 4 hours for Cr50-Si50 target is the optimum condition. In this study, HIP treatment reduced the porosity of the target about 60%
    corecore