621 research outputs found
Trapping effects on inflation
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
A New Seamless Bitstream Switching Scheme for H.264 Video Adaptation with Enhanced Coding Performance
[[abstract]]In this paper, we propose a new seamless bitstream switching scheme to improve the coding performance of H.264 SP-frames for rate adaptation. Our method removes one of the two re-quantization blocks in the SP-frame encoders so as to significantly improve coding performance. The seamless switching property of SP-frames is retained by properly restructuring the primary and secondary switching frame codecs. Experimental results show that our proposed scheme achieves close coding performance to that of regular H.264 P-frames and significantly better performance than that of SP-frames. The proposed method also provides the advantage of using a single secondary switching bitstream for both switching-up and switching-down processes[[fileno]]2030144030014[[department]]電機工程學
Observation of interlayer phonon modes in van der Waals heterostructures
We have investigated the vibrational properties of van der Waals
heterostructures of monolayer transition metal dichalcogenides (TMDs),
specifically MoS2/WSe2 and MoSe2/MoS2 heterobilayers as well as twisted MoS2
bilayers, by means of ultralow-frequency Raman spectroscopy. We discovered
Raman features (at 30 ~ 40 cm-1) that arise from the layer-breathing mode (LBM)
vibrations between the two incommensurate TMD monolayers in these structures.
The LBM Raman intensity correlates strongly with the suppression of
photoluminescence that arises from interlayer charge transfer. The LBM is
generated only in bilayer areas with direct layer-layer contact and atomically
clean interface. Its frequency also evolves systematically with the relative
orientation between of the two layers. Our research demonstrates that LBM can
serve as a sensitive probe to the interface environment and interlayer
interactions in van der Waals materials
Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways
<p>Abstract</p> <p>Background</p> <p>Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells.</p> <p>Method</p> <p>In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique.</p> <p>Results</p> <p>TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis.</p> <p>Conclusions</p> <p>These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.</p
Molecular Imaging, Pharmacokinetics, and Dosimetry of 111In-AMBA in Human Prostate Tumor-Bearing Mice
Molecular imaging with promise of personalized medicine can provide patient-specific information noninvasively, thus enabling treatment to be tailored to the specific biological attributes of both the disease and the patient. This study was to investigate the characterization of DO3A-CH2CO-G-4-aminobenzoyl-Q-W-A-V-G-H-L-M-NH2 (AMBA) in vitro, MicroSPECT/CT imaging, and biological activities of 111In-AMBA in PC-3 prostate tumor-bearing SCID mice. The uptake of 111In-AMBA reached highest with 3.87 ± 0.65% ID/g at 8 h. MicroSPECT/CT imaging studies suggested that the uptake of 111In-AMBA was clearly visualized between 8 and 48 h postinjection. The distribution half-life (t1/2α) and the elimination half-life (t1/2β) of 111In-AMBA in mice were 1.53 h and 30.7 h, respectively. The Cmax and AUC of 111In-AMBA were 7.57% ID/g and 66.39 h∗% ID/g, respectively. The effective dose appeared to be 0.11 mSv/MBq−1. We demonstrated a good uptake of 111In-AMBA in the GRPR-overexpressed PC-3 tumor-bearing SCID mice. 111In-AMBA is a safe, potential molecular image-guided diagnostic agent for human GRPR-positive tumors, ranging from simple and straightforward biodistribution studies to improve the efficacy of combined modality anticancer therapy
Conformal Covariantization of Moyal-Lax Operators
A covariant approach to the conformal property associated with Moyal-Lax
operators is given. By identifying the conformal covariance with the second
Gelfand-Dickey flow, we covariantize Moyal-Lax operators to construct the
primary fields of one-parameter deformation of classical -algebras.Comment: 13 pages, Revtex, no figures, v.2: typos corrected, references added
and conclusion modifie
Quantum Nucleation of Vortex String Loops
We investigate quantum nucleation of vortex string loops in the relativistic
quantum field theory of a complex scalar field by using the Euclidean path
integral. Our initial metastable homogeneous field dominated by the
symmetric bounce solution. The nucleation rate and the critical vortex loop
size are obtained approximately. Gradually the initial current will be reduced
to zero as the induced current inside vortex loops is opposite to the initial
current. We also discuss a similar process in Maxwell-Higgs systems and
possible physical implications.Comment: phyzzx.tex, 13 pages: A correction to the final state of the
nucleation of local vortex string
- …