5 research outputs found

    Control landscapes for two-level open quantum systems

    Full text link
    A quantum control landscape is defined as the physical objective as a function of the control variables. In this paper the control landscapes for two-level open quantum systems, whose evolution is described by general completely positive trace preserving maps (i.e., Kraus maps), are investigated in details. The objective function, which is the expectation value of a target system operator, is defined on the Stiefel manifold representing the space of Kraus maps. Three practically important properties of the objective function are found: (a) the absence of local maxima or minima (i.e., false traps); (b) the existence of multi-dimensional sub-manifolds of optimal solutions corresponding to the global maximum and minimum; and (c) the connectivity of each level set. All of the critical values and their associated critical sub-manifolds are explicitly found for any initial system state. Away from the absolute extrema there are no local maxima or minima, and only saddles may exist, whose number and the explicit structure of the corresponding critical sub-manifolds are determined by the initial system state. There are no saddles for pure initial states, one saddle for a completely mixed initial state, and two saddles for other initial states. In general, the landscape analysis of critical points and optimal manifolds is relevant to the problem of explaining the relative ease of obtaining good optimal control outcomes in the laboratory, even in the presence of the environment.Comment: Minor editing and some references adde

    Unified analysis of terminal-time control in classical and quantum systems

    Full text link
    Many phenomena in physics, chemistry, and biology involve seeking an optimal control to maximize an objective for a classical or quantum system which is open and interacting with its environment. The complexity of finding an optimal control for maximizing an objective is strongly affected by the possible existence of sub-optimal maxima. Within a unified framework under specified conditions, control objectives for maximizing at a terminal time physical observables of open classical and quantum systems are shown to be inherently free of sub-optimal maxima. This attractive feature is of central importance for enabling the discovery of controls in a seamless fashion in a wide range of phenomena transcending the quantum and classical regimes.Comment: 10 page
    corecore