43 research outputs found

    Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    Get PDF

    Prologue: Energy Metabolism and Weight Control

    Get PDF

    The Role of Adipocyte Hypertrophy and Hypoxia in the Development of Obesity-Associated Adipose Tissue Inflammation and Insulin Resistance

    Get PDF
    Adipose tissue inflammation has been suggested to play a central role in the pathogenesis of many obesity-associated complications including insulin resistance and type 2 diabetes. Adipocyte hypertrophy and hypoxia especially in morbid obesity are the important sources for the development of adipose tissue inflammation. This inflammation is mediated by producing a large number of cytokines and chemokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and regulated upon activation, normal T-cell expressed and secreted (RANTES). Of note, these cytokines and chemokines produced by adipocytes during hypertrophy and hypoxia are crucially involved in the initiation and development of obesity-associated inflammatory response in adipose tissue. The capacity of constitutive and regulated release of immune mediators from adipocytes demonstrates a causal link between the biology of adipocytes and immune cells, such as macrophages and T cells. Moreover, the synergistic effect of hypertrophic, hypoxia adipocytes, and adipose tissue immune cells has also been implicated in the development of obesity-induced insulin resistance. This chapter provides the overall review and update evidence to highlight the important role and possible underlying mechanism of adipocyte hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance

    Association of ORAI1 Haplotypes with the Risk of HLA-B27 Positive Ankylosing Spondylitis

    Get PDF
    Ankylosing spondylitis (AS) is a chronic inflammation of the sacroiliac joints, spine and peripheral joints. The aetiology of ankylosing spondylitis is still unclear. Previous studies have indicated that genetics factors such as human leukocyte antigen HLA-B27 associates to AS susceptibility. We carried out a case-control study to determine whether the genetic polymorphisms of ORAI1 gene, a major component of store-operated calcium channels that involved the regulation of immune system, is a susceptibility factor to AS in a Taiwanese population. We enrolled 361 AS patients fulfilled the modified New York criteria and 379 controls from community. Five tagging single nucleotides polymorphisms (tSNPs) at ORAI1 were selected from the data of Han Chinese population in HapMap project. Clinical statuses of AS were assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Index (BAS-G). Our results indicated that subjects carrying the minor allele homozygote (CC) of the promoter SNP rs12313273 or TT homozygote of the SNP rs7135617 had an increased risk of HLA-B27 positive AS. The minor allele C of 3′UTR SNP rs712853 exerted a protective effect to HLA-B27 positive AS. Furthermore, the rs12313273/rs7135617 pairwise allele analysis found that C-G (OR 1.69, 95% CI 1.27, 2.25; p = 0.0003) and T-T (OR 1.75, 95% CI 1.36, 2.27; p<0.0001) haplotypes had a significantly association with the risk of HLA-B27-positive AS in comparison with the T-G carriers. This is the first study that indicate haplotypes of ORAI1 (rs12313273 and rs7135617) are associated with the risk of HLA-B27 positive AS

    Impact of liver diseases on the development of type 2 diabetes mellitus

    No full text
    The prevalence of type 2 diabetes mellitus (T2DM) is higher in patients who have liver diseases such as nonalcoholic fatty liver disease, chronic viral hepatitis, hemochromatosis, alcoholic liver disease and cirrhosis. It is suggested that there is a pathogenic link between the presence of T2DM and the severity of liver injury. However, evidence related to the impact of hepatic inflammation on the development of T2DM has not yet emerged. This article provides an overview of the evidence for an increased prevalence of diabetes in a range of liver diseases, the impact of liver diseases on insulin resistance and β cell dysfunction, and the potential mechanisms whereby coexistent liver diseases exacerbate the development of T2DM

    The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases

    No full text
    Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans

    The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity

    No full text
    Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review

    Aqueous Extract of Monascus purpureus

    No full text

    The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance

    No full text
    Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, and COX-2, mainly the inducible form. COX-2 is the key enzyme in eicosanoid metabolism that converts eicosanoids into a number of PGs, including PGD2, PGE2, PGF2&alpha;, and prostacyclin (PGI2), all of which exert diverse hormone-like effects via autocrine or paracrine mechanisms. The COX-2 gene and immunoreactive proteins have been documented to be highly expressed and elevated in adipose tissue (AT) under morbid obesity conditions. On the other hand, the environmental stress-induced expression and constitutive over-expression of COX-2 have been reported to play distinctive roles under different pathological and physiological conditions; i.e., over-expression of the COX-2 gene in white AT (WAT) has been shown to induce de novo brown AT (BAT) recruitment in WAT and then facilitate systemic energy expenditure to protect mice against high-fat diet-induced obesity. Hepatic COX-2 expression was found to protect against diet-induced steatosis, obesity, and insulin resistance. However, COX-2 activation in the epidydimal AT is strongly correlated with the development of AT inflammation, insulin resistance, and fatty liver in high-fat-diet-induced obese rats. This review will provide updated information regarding the role of COX-2-derived signals in the regulation of energy metabolism and the pathogenesis of obesity and MS

    Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice

    No full text
    The C-C chemokine motif ligand 5 (CCL5) and its receptors have recently been thought to be substantially involved in the development of obesity-associated adipose tissue inflammation and insulin resistance. However, the respective contributions of tissue-derived and myeloid-derived CCL5 to the etiology of obesity-induced adipose tissue inflammation and insulin resistance, and the involvement of monocytic myeloid-derived suppressor cells (MDSCs), remain unclear. This study used CCL5-knockout mice combined with bone marrow transplantation (BMT) and mice with local injections of shCCL5/shCCR5 or CCL5/CCR5 lentivirus into bilateral epididymal white adipose tissue (eWAT). CCL5 gene deletion significantly ameliorated HFD-induced inflammatory reactions in eWAT and protected against the development of obesity and insulin resistance. In addition, tissue (non-hematopoietic) deletion of CCL5 using the BMT method not only ameliorated adipose tissue inflammation by suppressing pro-inflammatory M-MDSC (CD11b+Ly6G&minus;Ly6Chi) accumulation and skewing local M1 macrophage polarization, but also recruited reparative M-MDSCs (CD11b+Ly6G&minus;Ly6Clow) and M2 macrophages to the eWAT of HFD-induced obese mice, as shown by flow cytometry. Furthermore, modulation of tissue-derived CCL5/CCR5 expression by local injection of shCCL5/shCCR5 or CCL5/CCR5 lentivirus substantially impacted the distribution of pro-inflammatory and reparative M-MDSCs as well as macrophage polarization in bilateral eWAT. These findings suggest that an obesity-induced increase in adipose tissue CCL5-mediated signaling is crucial in the recruitment of tissue M-MDSCs and their trans-differentiation to tissue pro-inflammatory macrophages, resulting in adipose tissue inflammation and insulin resistance
    corecore