439 research outputs found
Osteosarcoma (Osteogenic sarcoma)
Osteosarcoma is a primary malignant tumour of the skeleton characterised by the direct formation of immature bone or osteoid tissue by the tumour cells. The classic osteosarcoma is a rare (0.2% of all malignant tumours) highly malignant tumour, with an estimated incidence of 3 cases/million population/year. Osteosarcoma arises predominantly in the long bones and rarely in the soft tissues. The age at presentation ranges from 10 to 25 years of age. Plain radiographs, computed tomography, magnetic resonance imaging, angiography and dynamic bone scintigraphy are used for diagnosis, evaluation the extent of tumour involvement and decision of the type of operation and, if necessary, the type of reconstruction. Years ago, all patients with osteosarcoma were treated by amputation but the cure rate was under 10% and almost all patients died within a year from diagnosis. Today, for localised osteosarcoma at onset (80% of cases) treated in specialized bone tumour centres with pre- and postoperative chemotherapy associated with surgery, the percentage of patients cured varies between 60% and 70%. Surgery is conservative (limb salvage) in more than 90% of patients. Prognosis is more severe (cure rate about 30%) for tumours located in the axial skeleton and in patients with metastasis at onset
CCN2 Enhances Resistance to Cisplatin-Mediating Cell Apoptosis in Human Osteosarcoma
Osteosarcoma (OS) is the most common form of malignant bone tumor and is an aggressive malignant neoplasm exhibiting osteoblastic differentiation. Cisplatin is one of the most efficacious antitumor drugs for osteosarcoma patients. However, treatment failures are common due to the development of chemoresistance. CCN2 (also known as CTGF), is a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CCN2 in cisplatin-mediated chemotherapy is still unknown. Here, we found that CCN2 was upregulated in human osteosarcoma cells after treatment with cisplatin. Moreover, overexpression of CCN2 increased the resistance to cisplatin-mediated cell apoptosis. In contrast, reduction of CCN2 by CCN2 shRNA promoted the chemotherapeutic effect of cisplatin. We also found that CCN2 provided resistance to cisplatin-induced apoptosis through upregulation of Bcl-xL and survivin. Knockdown of Bcl-xL or survivin removed the CCN2-mediated resistance to apoptosis induced by cisplatin. On the other hand, CCN2 also promoted FAK, MEK, and ERK survival signaling pathways to enhance tumor survival during cisplatin treatment. In a mouse xenograft model, overexpression of CCN2 promoted resistance to cisplatin. However, knockdown of CCN2 increased the therapeutic effect of cisplatin. Therefore, our data suggest that CCN2 might be a critical oncogene of human osteosarcoma for cisplatin-resistance and supported osteosarcoma cell growth in vivo and in vitro
THE BALANCE EFFECT OF REARFOOT WEDGES WITH DIFFERENT HEIGHT FOR COLLEGIATE STUDENTS WITH CHRONIC ANKLE INSTABILITY: PILOT STUDY
Chronic ankle instability (CAI) is caused by recurrent lateral ankle sprain. Foot orthotic is one option of treatment. The purpose of this study was to determinate the balance effect of rearfoot wedges with different height in collegiate students with chronic ankle instability. Eight collegiate students with CAI subjects were voluntarily particapated in this study. The area of center of pressure was used as balance variable of outcome measurement. Seven height of rearfoot wedge was used to test, included 0°, 2°, 4°, 6° of medial wedge and 2°, 4°, 6° of lateral wedge. One-way ANOVA was used to analyze the difference among sevent height of wedge intervention in CAI group. The results were showed no significantly difference among seven height of wedge intervention. However, we found a trend of balance improvement with the wedge intervention, especially in 4 degrees of medial wedge intervention
Physiological indexes, psychological resilience, sensory functions, and sleep quality on the cognitive function of older adults with pre-frailty: a predictive study
Population ageing has increased the prevalence of
prefrailty comorbid with cognitive impairment among older adults. However, few
studies have explored the risk factors common to both prefrailty and cognitive
impairment. This study determined the predictive accuracy of demographic
characteristics, physiological indexes, psychological resilience, sensory
function, and sleep quality on the cognitive function of older adults with
prefrailty. In this cross-sectional study, the physiological
indexes, psychological resilience, sensory function, sleep quality, and cognitive
function of 167 community-dwelling older adults with prefrailty recruited through
purposive sampling were measured. SPSS software was used for data coding and
compilation. Data analysis involved the use of descriptive statistics, the
independent samples t test, the chi-square test, and logistic
regression. Overall, in cognitive function, there was no
difference in gender but were in age, were incapable of text messaging, had a
greater number of chronic diseases, were less able to perform activities of daily
living, had low psychological resilience, and had depressive tendencies. In
addition, Text messaging capability and depression status can all predict the
cognitive impairment state of prefrail older elderly. Physiological indexes, psychological resilience, sensory function, and sleep
quality can affect cognitive function in older adults with prefrailty. Meanwhile,
depressive tendencies and the inability to send text messages on a mobile device
constituted critical predictors of cognitive function in the participants
The Design and Analysis of Passive Pitch Control for Horizontal Axis Wind Turbine
AbstractThe purpose of this thesis is to design and analysis of passive pitch control. Design a mechanics to control different revolution of blade's pitch angle. The use of small wind turbines gradually popularization, but how to overcome the low wind speed start-up and the operation under high wind speed, that is the difficult problems encountered by designers. In order to extend the use and the safe of wind speed, this design is required. This paper is focus on the mechanism design of the passive pitch control for the small horizontal axis wind turbine (HAWT). When the wind speed is fast, the rotation speed is also faster and faster. The system uses centrifugal force to make Pulley disk driven the pitch angle of the blade. It can achieve the effect of passive pitch control. The mechanism is our laboratory's patent. Through the experiments in wind tunnel, it can be observed the variation of the performance curve when the pitch rotation. This system not only successfully operates under high wind speed but also has better performance at low wind speed
Using Fractal Dimension Analysis with the Desikan–Killiany Atlas to Assess the Effects of Normal Aging on Subregional Cortex Alterations in Adulthood
Normal aging is associated with functional and structural alterations in the human brain. The effects of normal aging and gender on morphological changes in specific regions of the brain are unknown. The fractal dimension (FD) can be a quantitative measure of cerebral folding. In this study, we used 3D-FD analysis with the Desikan–Killiany (DK) atlas to assess subregional morphological changes in adulthood. A total of 258 participants (112 women and 146 men) aged 30–85 years participated in this study. Participants in the middle-age group exhibited a decreased FD in the lateral frontal lobes, which then spread to the temporal and parietal lobes. Men exhibited an earlier and more significant decrease in FD values, mainly in the right frontal and left parietal lobes. Men exhibited more of a decrease in FD values in the subregions on the left than those in the right, whereas women exhibited more of a decrease in the lateral subregions. Older men were at a higher risk of developing mild cognitive impairment (MCI) and exhibited age-related memory decline earlier than women. Our FD analysis using the DK atlas-based prediagnosis may provide a suitable tool for assessing normal aging and neurodegeneration between groups or in individual patients
Alteration of the Intra- and Inter-Lobe Connectivity of the Brain Structural Network in Normal Aging
The morphological changes in cortical parcellated regions during aging and whether these atrophies may cause brain structural network intra- and inter-lobe connectivity alterations are subjects that have been minimally explored. In this study, a novel fractal dimension-based structural network was proposed to measure atrophy of 68 parcellated cortical regions. Alterations of structural network parameters, including intra- and inter-lobe connectivity, were detected in a middle-aged group (30-45 years old) and an elderly group (50-65 years old). The elderly group exhibited significant lateralized atrophy in the left hemisphere, and most of these fractal dimension atrophied regions were included in the regions of the "last-in, first-out" model. Globally, the elderly group had lower modularity values, smaller component size modules, and fewer bilateral association fibers. They had lower intra-lobe connectivity in the frontal and parietal lobes, but higher intra-lobe connectivity in the temporal and occipital lobes. Both groups exhibited similar inter-lobe connecting pattern. The elderly group revealed separations, sparser long association fibers, commissural fibers, and lateral inter-lobe connectivity lost effect, mainly in the right hemisphere. New wiring and reconfiguring modules may have occurred within the brain structural network to compensate for connectivity, decreasing and preventing functional loss in cerebral intra- and inter-lobe connectivity
The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.
Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation
- …