2,406 research outputs found

    Mining Circumgalactic Baryons in the Low-Redshift Universe

    Full text link
    (Abridged) This paper presents an absorption-line study of the multiphase circumgalactic medium (CGM) based on observations of Lya, CII, CIV, SiII, SiIII, and SiIV absorption transitions in the vicinities of 195 galaxies at redshift z<0.176. The galaxy sample is established based on a cross-comparison between public galaxy and QSO survey data and is characterized by a median redshift of =0.041, a median projected distance of =362 kpc to the sightline of the background QSO, and a median stellar mass of log(M_star/M_sun) = 9.7 \pm 1.1. Comparing the absorber features identified in the QSO apectra with known galaxy properties has led to strong constraints for the CGM absorption properties at z<~0.176. First, abundant hydrogen gas is observed out to d~500 kpc, well beyond the dark matter halo radius Rh of individual galaxies, with a mean covering fraction of ~60%. In contrast, no heavy elements are detected at d>~0.7 Rh from either low-mass dwarfs or high-mass galaxies. The lack of detected heavy elements in low- and high-ionization states suggests that either there exists a chemical enrichment edge at d~0.7 Rh or gaseous clumps giving rise to the observed absorption lines cannot survive at these large distances. Considering all galaxies at d>Rh leads to a strict upper limit for the covering fraction of heavy elements of ~3% (at a 95% confidence level) over d=(1-9) Rh. At d<Rh, differential covering fraction between low- and high-ionization gas is observed, suggesting that the CGM becomes progressively more ionized from d<0.3 Rh to larger distances. Comparing CGM absorption observations at low and high redshifts shows that at a fixed-fraction of Rh the CGM exhibits stronger mean absorption at z=2.2 than at z~0. We discuss possible pseudo-evolution of the CGM as a result of misrepresentation of halo radius.Comment: 25 pages, 13 figures; accepted for publication in MNRA

    On the Halo Occupation of Dark Baryons

    Full text link
    We introduce a new technique that adopts the halo occupation framework for understanding the origin of QSO absorption-line systems. Our initial study focuses specifically on MgII absorbers. We construct a model of the gaseous content in which the absorption equivalent width W_r is determined by the the amount of cold gas, in the form of discrete clouds, along a sightline through a halo. The two quantities that we specify per halo in the model are (1) the mean absorption strength per unit surface mass density A_W(M), and (2) the mean covering factor kappa_g(M) of the gaseous clouds. These parameters determine the conditional probability distribution of W_r as a function of halo mass, P(W_r|M). Two empirical measurements are applied to constrain the model: (i) the absorber frequency distribution function and (ii) the W_r-dependent clustering amplitude. We find that the data demand a rapid transition in the gas content of halos at ~10^11.5 Msol/h, below which halos contain predominantly cold gas and beyond which gas becomes predominantly hot. In order to reproduce the observed overall strong clustering of the absorbers and the anti-correlation between W_r and halo mass M, roughly 5% of gas in halos up to 10^14 Msol/h is required to be cold. The gas covering factor is near unity over a wide range of halo mass, supporting that Mg II systems probe an unbiased sample of typical galaxies. We discuss the implications of our study in the contexts of mass assembly of distant galaxies and the origin of QSO absorption line systems.Comment: 15 emulateapj pages, 7 figures, replaced with revised version incorporating referee's comment

    A STIS Survey for OVI Absorption Systems at 0.12 < z < 0.5 I.: The Statistical Properties of Ionized Gas

    Full text link
    We have conducted a systematic survey for intervening OVI absorbers in available echelle spectra of 16 QSOs at z_QSO = 0.17-0.57. These spectra were obtained using HST/STIS with the E140M grating. Our search uncovered a total of 27 foreground OVI absorbers with rest-frame absorption equivalent width W_r(1031) > 25mA. Ten of these QSOs exhibit strong OVI absorbers in their vicinity. Our OVI survey does not require the known presence of Lya, and the echelle resolution allows us to identify the OVI absorption doublet based on their common line centroid and known flux ratio. We estimate the total redshift survey path, \Delta z, using a series of Monte-Carlo simulations, and find that \Delta z=1.66, 2.18, and 2.42 for absorbers of strength W_r = 30, 50 and 80mA, respectively, leading to a number density of dN(W > 50mA)/dz = 6.7 +/- 1.7 and dN(W > 30mA)/dz = 10.4 +/- 2.2. In contrast, we also measure dN/dz = 27 +/- 9 for OVI absorbers of W_r > 50mA at |\Delta v|< 5000 kms from the background QSOs. Using the random sample of OVI absorbers with well characterized survey completeness, we estimate a mean cosmological mass density of the OVI gas \Omega(OVI)h = 1.7 +/- 0.3 x 10^-7. In addition, we show that <5% of OVI absorbers originate in underdense regions that do not show a significant trace of HI. Furthermore, we show that the neutral gas column N(HI) associated with these OVI absorbers spans nearly five orders of magnitude, and show moderate correlation with N(OVI). Finally, while the number density of OVI absorbers varies substantially from one sightline to another, it also appears to be inversely correlated with the number density of HI absorbers along individual lines of sight.Comment: 12 pages. ApJ accepte

    Urinary Tract Infection in Children

    Get PDF
    corecore