48 research outputs found
The meaning of a defined accounting concept: regulatory changes and the effect on auditor decision making
Accounting standards exist in an attempt to 'standardize' accounting practice. These standards contain definitions of accounting concepts whose function is to guide judgments made in practice. However, such judgments can have a major impact on a firm's externally reported accounting numbers, as their inherent subjectivity and discretion may be lent to the manipulation of earnings. This study provides empirical evidence of the effect of measured meaning on an accounting judgment, in the context of regulated changes to the definition of one key accounting concept used in measuring operating income. The extraordinary items classification decisions made by auditors were found to be systematically associated with differences in measured meaning of the extraordinary items definition. The study has important policy implications for accounting standard-setting
The sharing of meaning between accounting students and members of the accounting profession
This study examines the extent to which accounting students and practising accountants share the same meanings of fundamental accounting concepts. In doing so, it provides evidence on the suitability of using accounting students as surrogates for accounting practitioners in the study of connotative meaning in accounting. Using the semantic differential technique, the 'cognitive structure' (the structure within which meaning is held) as well as the positioning or placement of concepts within the structure were determined for both groups. Each group was found to have a similar cognitive structure (a three dimensional structure comparable to the classic structure found in the psychology literature, Osgood, Suci and Tannenbaum, 1957). However, the placement or positioning of concepts by students within that shared structure was significantly different to that of accounting practitioners
High-resolution solid-state NMR study of isotactic polypropylenes
The high-resolution solid-state 13C NMR spectra were recorded for metallocene (m) and Ziegler-Natta (ZN) isotactic polypropylenes (iPP) in pelletized form using cross polarization (CP) and magic angle spinning (MAS) techniques within the temperature range of 20–160°C. Besides the CP MAS experiments also the MAS 13C NMR spectra (without CP), MAS 1H NMR spectra and rotating frame spin-lattice relaxation times T1ρ (13C) were measured at elevated temperatures. With the rise of temperature the splitting of CH2, CH and CH3 signals into two components was detected in 13C NMR spectra and assigned to amorphous and crystalline phases. The temperature dependences of chemical shifts and integral intensities obtained from the deconvoluted spectra provided information on the main chain and CH3 groups motions in amorphous and crystalline regions of studied samples. While T1ρ (13C) values show that the rate of segmental motion in amorphous regions in m-iPP and ZN-iPP is virtually the same, larger linewidths in 13C and 1H NMR spectra indicate somewhat larger restraints of the motion in amorphous regions of ZN-iPP
Thermal and compositional structure of the subcontinental lithospheric mantle : derivation from shear wave seismic tomography
Seismic tomography can provide unique information on the structure of the subcontinental lithospheric mantle (SCLM), but seismic velocity reflects both temperature and composition. We present a methodology for evaluating and isolating the relative contributions of these effects, which produces maps of regional geotherm and broad compositional constraints on the SCLM from the inversion of shear wave (Vs) seismic tomography. This approach uses model geotherms quantized in steps of 2.5 mW/m2 and three mantle compositions corresponding to typical Archean, Proterozoic, and Phanerozoic SCLM. Starting from an assumed composition for a volume of SCLM, lithospheric density at surface pressure and temperature is calculated for each geotherm at each point; the optimum geotherm is taken as the one yielding a density closest to the mean value derived from mantle xenoliths (3.31 g/cm3), since density varies with composition. Results requiring densities or geotherms outside the known natural range of these parameters worldwide require the choice of a different mantle composition. This technique, applied iteratively to a 275 km × 275 km Vs model developed by S. Grand (University of Texas, Austin), results in maps of the geotherm and regional density, which allow interpretation of SCLM composition within broad limits. These results can then be compared with local (paleo)geotherms and data for mantle composition, derived from xenolith suites. Application of this technique to the SCLM beneath Africa, Siberia, and North America shows good correlation with regional geological features, xenolith data, and other geophysical data.20 page(s
Upper mantle structure beneath eastern Siberia : evidence from gravity modeling and mantle petrology
The spatial distribution of large-scale lithospheric domains and the boundaries between them may control the emplacement of large ore bodies, and as such, regional mapping of the lithosphere is relevant to mineral exploration. In this study we combine potential-field geophysical data and mantle petrology to map major lithospheric structures on the eastern part of the Siberian platform. The platform consists of several Archean and Proterozoic terranes that have been mapped from regional magnetic data and basement exposures in the Anabar shield. We use garnet and chromite concentrates from a chain of Paleozoic to Mesozoic kimberlites across the platform to construct mantle sections, which show significant lateral variation in rock type distribution within the lithospheric mantle. These lateral variations correspond to the terranes mapped at the surface and indicate that the terrane boundaries are translithospheric. Archean terranes are underlain by depleted Archean lithosphere more than 200 km thick, while the Proterozoic terranes are underlain by thinner and less depleted lithosphere. Geophysical data show more strongly negative Bouguer anomalies and a more heterogeneous magnetic anomaly pattern over the Archean terranes than on the Proterozoic terranes. The pattern of the gravity data reflects the lateral variation in mantle composition beneath the terranes, as shown by mantle-petrology studies. We invert gravity and topography data to estimate the flexural strength, or elastic thickness (Te), of the lithosphere across the area. Although on a stable Precambrian craton, the Te is relatively low (<30 km) across most of the area, suggesting a relatively weak lithosphere comparable to that of tectonically much younger areas around the world. A 150-km-wide zone of very weak lithosphere (Te < 10 km) runs N-S across the western part of the study area. This weak zone coincides with a zone of thickened lower crust, and abnormally high sub-Moho P wave velocities which suggest anisotropy in the upper mantle. The kimberlite fields in the Archean part of the platform are localized on the flanks of this zone of weak lithosphere. We suggest that the low-Te zone may be a mantle shear zone which has been a preferred conduit for the emplacement of magmas into the lower crust and later has controlled the emplacement of kimberlites in the study area.21 page(s
Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: state-of-the-art and outlook
Mineral exploration targeting is a highly complex decision-making task. Two key risk factors, the quality of exploration data and robustness of the underlying conceptual targeting model, have a strong impact on the effectiveness of this decision-making. Geographic information systems (GIS) can be used not only for compiling, integrating, interrogating and interpreting diverse exploration data, but also for targeting by employing powerful mathematical algorithms, an approach that is commonly referred to as mineral potential modelling or mineral prospectivity mapping (MPM). Here, we pose and examine key aspects around the question of “how can we get better at mineral exploration targeting using GIS?” We do this by (1) reviewing the fundamental aspects of MPM, (2) identifying significant deficiencies of MPM, and (3) discussing possible solutions to alleviating or eliminating these deficiencies. In particular, we discuss how these deficiencies can be overcome by adopting an intelligence amplification system, such as the recently proposed exploration information system (EIS) for translating critical ore-forming processes into spatially predictive criteria (i.e., predictor maps and spatial proxies) and improving decision-making in mineral exploration targeting