2,493 research outputs found
Time reversal in thermoacoustic tomography - an error estimate
The time reversal method in thermoacoustic tomography is used for
approximating the initial pressure inside a biological object using
measurements of the pressure wave made on a surface surrounding the object.
This article presents error estimates for the time reversal method in the cases
of variable, non-trapping sound speeds.Comment: 16 pages, 6 figures, expanded "Remarks and Conclusions" section,
added one figure, added reference
Ketogenic diets in clinical psychology: examining the evidence and implications for practice
Introduction: The application of ketogenic dietary interventions to mental health treatments is increasingly acknowledged within medical and psychiatric fields, yet its exploration in clinical psychology remains limited. This article discusses the potential implications of ketogenic diets, traditionally utilized for neurological disorders, within broader mental health practices. Methods: This article presents a perspective based on existing ketogenic diet research on historical use, biological mechanisms, and therapeutic benefits. It examines the potential application of these diets in mental health treatment and their relevance to clinical psychology research and practice. Results: The review informs psychologists of the therapeutic benefits of ketogenic diets and introduces to the psychology literature the underlying biological mechanisms involved, such as modulation of neurotransmitters, reduction of inflammation, and stabilization of brain energy metabolism, demonstrating their potential relevance to biopsychosocial practice in clinical psychology. Conclusion: By considering metabolic therapies, clinical psychologists can broaden their scope of biopsychosocial clinical psychology practice. This integration provides a care model that incorporates knowledge of the ketogenic diet as a treatment option in psychiatric care. The article emphasizes the need for further research and training for clinical psychologists to support the effective implementation of this metabolic psychiatry intervention
Successful Treatment of an MTBE-impacted Aquifer Using a Bioreactor Self-colonized by Native Aquifer Bacteria
A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 μg L−1), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes
Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production
An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filterfeeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp (Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested
A mathematical model and inversion procedure for Magneto-Acousto-Electric Tomography (MAET)
Magneto-Acousto-Electric Tomography (MAET), also known as the Lorentz force
or Hall effect tomography, is a novel hybrid modality designed to be a
high-resolution alternative to the unstable Electrical Impedance Tomography. In
the present paper we analyze existing mathematical models of this method, and
propose a general procedure for solving the inverse problem associated with
MAET. It consists in applying to the data one of the algorithms of
Thermo-Acoustic tomography, followed by solving the Neumann problem for the
Laplace equation and the Poisson equation.
For the particular case when the region of interest is a cube, we present an
explicit series solution resulting in a fast reconstruction algorithm. As we
show, both analytically and numerically, MAET is a stable technique yilelding
high-resolution images even in the presence of significant noise in the data
Thermoacoustic tomography arising in brain imaging
We study the mathematical model of thermoacoustic and photoacoustic
tomography when the sound speed has a jump across a smooth surface. This models
the change of the sound speed in the skull when trying to image the human
brain. We derive an explicit inversion formula in the form of a convergent
Neumann series under the assumptions that all singularities from the support of
the source reach the boundary
Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm
Practical applications of thermoacoustic tomography require numerical
inversion of the spherical mean Radon transform with the centers of integration
spheres occupying an open surface. Solution of this problem is needed (both in
2-D and 3-D) because frequently the region of interest cannot be completely
surrounded by the detectors, as it happens, for example, in breast imaging. We
present an efficient numerical algorithm for solving this problem in 2-D
(similar methods are applicable in the 3-D case). Our method is based on the
numerical approximation of plane waves by certain single layer potentials
related to the acquisition geometry. After the densities of these potentials
have been precomputed, each subsequent image reconstruction has the complexity
of the regular filtration backprojection algorithm for the classical Radon
transform. The peformance of the method is demonstrated in several numerical
examples: one can see that the algorithm produces very accurate reconstructions
if the data are accurate and sufficiently well sampled, on the other hand, it
is sufficiently stable with respect to noise in the data
A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry
Photoacoustic computed tomography (PACT), also known as optoacoustic
tomography, is an emerging imaging modality that has great potential for a wide
range of biomedical imaging applications. In this Note, we derive a hybrid
reconstruction formula that is mathematically exact and operates on a data
function that is expressed in the temporal frequency and spatial domains. This
formula explicitly reveals new insights into how the spatial frequency
components of the sought-after object function are determined by the temporal
frequency components of the data function measured with a circular or spherical
measurement geometry in two- and three-dimensional implementations of PACT,
respectively. The structure of the reconstruction formula is surprisingly
simple compared with existing Fourier-domain reconstruction formulae. It also
yields a straightforward numerical implementation that is robust and two orders
of magnitude more computationally efficient than filtered backprojection
algorithms.Comment: http://iopscience.iop.org/0031-9155/57/23/N493
Identifying Sources of Antibiotic Resistance Genes in the Environment Using the Microbial \u3cem\u3eFind, Inform,\u3c/em\u3e and \u3cem\u3eTest\u3c/em\u3e Framework
Introduction: Antimicrobial resistance (AMR) is an increasing public health concern for humans, animals, and the environment. However, the contributions of spatially distributed sources of AMR in the environment are not well defined.
Methods: To identify the sources of environmental AMR, the novel microbial Find, Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified from riverbed sediment and surface water from a mixed-use region.
Results: A one standard deviation increase in the modeled contributions of elevated AMR from bovine sources or land-applied waste sources [land application of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic (i.e., municipal and septage)] was associated with 34–80% and 33–77% increases in the relative abundances of the ARGs in riverbed sediment and surface water, respectively. Sources influenced environmental AMR at overland distances of up to 13 km.
Discussion: Our study corroborates previous evidence of offsite migration of microbial pollution from bovine sources and newly suggests offsite migration from land-applied waste. With FIT, we estimated the distance-based influence range overland and downstream around sources to model the impact these sources may have on AMR at unsampled sites. This modeling supports targeted monitoring of AMR from sources for future exposure and risk mitigation efforts
- …