2,585 research outputs found

    INTERCELLULAR CONTACTS BETWEEN SMOOTH MUSCLE CELLS IN THE NEOINTIMA OF THE AUTOGENOUS REVERSED SAPHENOUS VEIN GRAFTS

    Get PDF
    No abstrac

    Copper Oxide Nanoparticles Inhibit the Metabolic Activity of \u3cem\u3eSaccharomyces cerevisiae \u3c/em\u3e

    Get PDF
    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu2+ during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu2+ ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu2+ fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs

    Temporal Analysis of Activity Patterns of Editors in Collaborative Mapping Project of OpenStreetMap

    Full text link
    In the recent years Wikis have become an attractive platform for social studies of the human behaviour. Containing millions records of edits across the globe, collaborative systems such as Wikipedia have allowed researchers to gain a better understanding of editors participation and their activity patterns. However, contributions made to Geo-wikis_wiki-based collaborative mapping projects_ differ from systems such as Wikipedia in a fundamental way due to spatial dimension of the content that limits the contributors to a set of those who posses local knowledge about a specific area and therefore cross-platform studies and comparisons are required to build a comprehensive image of online open collaboration phenomena. In this work, we study the temporal behavioural pattern of OpenStreetMap editors, a successful example of geo-wiki, for two European capital cities. We categorise different type of temporal patterns and report on the historical trend within a period of 7 years of the project age. We also draw a comparison with the previously observed editing activity patterns of Wikipedia.Comment: Submitte

    Is There Any Light in the Tunnel? On the Drawbacks of the Roma Educational Integration in Bulgaria

    Full text link
    The main objective of this paper is to identify the issues, which have led to Roma exclusion from the mainstream education. The first part of the paper is focused on data, correlating unequal educational opportunities and the ethnicity factor. The text presents an insight into the widely argued Roma dropout phenomenon. Different sets of reasons for dropping out from school are being discussed, i.e. educational, ethnic and cultural, economic, and family reasons. In addition, the article reflects on the retrograde beliefs of the majority population as a prerequisite for Roma reluctance towards continuing education. Moreover, the article puts forward a review on the most recent key policy measures for equal educational opportunities, targeting the Roma. Various aspects of adopted policy interventions for stimulating educational inclusion are illustrated, and supplemented by a critical analysis. The authors conclude that the required strategic actions, targeting educational equity for marginalized social groups, such as the Roma, have been indeed formulated by the stakeholders; yet, certain shortcomings have been noticed and these are primarily linked to the practical implementation of the national documents into real actions

    To Duckweeds (\u3cem\u3eLandoltia punctata\u3c/em\u3e), Nanoparticulate Copper Oxide is More Inhibitory than the Soluble Copper in the Bulk Solution

    Get PDF
    CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer–Emmett–Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L−1 soluble copper or by 1.0 mg L−1 CuO-NP that released only 0.16 mg L−1 soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L−1 CuO-NP, but not in the comparable 0.2 mg L−1 soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content

    Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure

    Get PDF
    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg)

    Thermoacoustic tomography with variable sound speed

    Full text link
    We study the mathematical model of thermoacoustic tomography in media with a variable speed for a fixed time interval, greater than the diameter of the domain. In case of measurements on the whole boundary, we give an explicit solution in terms of a Neumann series expansion. We give necessary and sufficient conditions for uniqueness and stability when the measurements are taken on a part of the boundary

    Chronic Exposure to Triclosan Sustains Microbial Community Shifts and Alters Antibiotic Resistance Gene Levels in Anaerobic Digesters

    Get PDF
    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg−1 dry solids were amended into anaerobic digesters over 110 days and acclimated for \u3e3 solid retention time values. Four steady state TCS concentrations were chosen (30–2500 mg kg−1). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg−1 or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health

    Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e

    Get PDF
    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress)
    • …
    corecore