145 research outputs found

    Iterative algorithm for reconstruction of entangled states

    Get PDF
    An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible measurements is proposed. It consists of Expectation-Maximization step followed by a unitary transformation of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the entangled pair of photons.Comment: 4 pages, no figures, some formulations changed, a minor mistake correcte

    Reconstruction of the spin state

    Get PDF
    System of 1/2 spin particles is observed repeatedly using Stern-Gerlach apparatuses with rotated orientations. Synthesis of such non-commuting observables is analyzed using maximum likelihood estimation as an example of quantum state reconstruction. Repeated incompatible observations represent a new generalized measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur

    Two Ising-like magnetic excitations in a single-layer cuprate superconductor

    Full text link
    There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the 'pseudogap' temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.Comment: Including supplementary informatio

    MINERALOGY OF HALLOYSITES AND THEIR INTERACTION WITH PORPHYRINE

    Get PDF
    Samples representing two modifications of halloysites, dehydrated (7 Å) and hydrated (10 Å) forms, respectively, were examined with the aim to select suitable candidates for to be used as carriers of porphyrine photoactive molecules. The samples were analysed by powder X-ray diffraction (pXRD), infrared spectroscopy (FT-IR), and high resolution transmission electron microscopy (HRTEM). Chemical composition was also determined. For the determination of cationic exchange capacity (CEC) the silver thiourea method (AgTU) was used. Silver cations concentrations in the solution before and after the interaction were determined by atomic absorption spectrometry (AAS). By the interaction of two pure hydrated halloysites with porphyrine it was found that porphyrine does not intercalate the interlayer space, but it is adsorbed on the outer surface of halloysite. This interaction changed the colour of clay sample from white to green. The changes were also clearly visible on diffuse reflectance spectra (DRS)

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^]0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    Reconstruction of motional states of neutral atoms via MaxEnt principle

    Get PDF
    We present a scheme for a reconstruction of states of quantum systems from incomplete tomographic-like data. The proposed scheme is based on the Jaynes principle of Maximum Entropy. We apply our algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice

    Quantum Zeno Dynamics

    Get PDF
    The evolution of a quantum system undergoing very frequent measurements takes place in a subspace of the total Hilbert space (quantum Zeno effect). The dynamical properties of this evolution are investigated and several examples are considered.Comment: 12 pages, 1 figur

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    Sub-Heisenberg estimation of non-random phase-shifts

    Get PDF
    We provide evidence that the uncertainty in detection of small and deterministic phase-shift deviations from a working point can be lower than the Heisenberg bound, for fixed finite mean number of photons. We achieve that by exploiting non-linearity of estimators and coherence with the vacuum.Comment: Published version. Partially rewritten including further explanations and more numerical simulations. Updated reference

    A high-fidelity noiseless amplifier for quantum light states

    Full text link
    Noise is the price to pay when trying to clone or amplify arbitrary quantum states. The quantum noise associated to linear phase-insensitive amplifiers can only be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest level of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, and characterized by a significant amplification and low distortions, this high-fidelity amplification scheme may become an essential tool for quantum communications and metrology, by enhancing the discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.Comment: 5 pages, 4 figure
    corecore