888 research outputs found

    One-Armed Spiral Waves in Galaxy Simulations with Counter-Rotating Stars

    Get PDF
    Motivated by observations of disk galaxies with counter-rotating stars, we have run two-dimensional, collisionless N-body simulations of disk galaxies with significant counter-rotating components. For all our simulations the initial value of Toomre's stability parameter was Q = 1.1. The percentage of counter-rotating particles ranges from 25% to 50%. A stationary one-arm spiral wave is observed to form in each run, persisting from a few to five rotation periods, measured at the half-mass radius. In one run, the spiral wave was initially a leading arm which subsequently transformed into a trailing arm. We also observed a change in spiral direction in the run initially containing equal numbers of particles orbiting in both directions. The results of our simulations support an interpretation of the one armed waves as due to the two stream instability.Comment: 13 pages, 4 figure

    Growth of Velocity Dispersions for Collapsing Spherical Stellar Systems

    Get PDF
    First, we have ensured that spherical nonrotating collisionless systems collapse with almost retaining spherical configurations during initial contraction phases even if they are allowed to collapse three-dimensionally. Next, on the assumption of spherical symmetry, we examine the evolution of velocity dispersions with collapse for the systems which have uniform or power-law density profiles with Maxwellian velocity distributions by integrating the collisionless Boltzmann equation directly. The results show that as far as the initial contraction phases are concerned, the radial velocity dispersion never grows faster than the tangential velocity dispersion except at small radii where the nearly isothermal nature remains, irrespective of the density profiles and virial ratios. This implies that velocity anisotropy as an initial condition should be a poor indicator for the radial orbit instability. The growing behavior of the velocity dispersions is briefly discussed from the viewpoint that phase space density is conserved in collisionless systems.Comment: 12 pages, including 5 postscript figures. This preprint is also available at http://www.kcua.ac.jp/~fujiwara/e-prints/e-prints.html Submitted to Publ.Astron.Soc.Japa

    A Long Slit-Like Entrance Promotes Ventilation in the Mud Nesting Social Wasp, Polybia spinifex: Visualization of Nest Microclimates using Computational Fluid Dynamics

    Get PDF
    Polybia spinifex Richards (Hymenoptera: Vespidae) constructs mud nests characterized by a long slit-like entrance. The ventilation and thermal characteristics of the P. spinifex nest were investigated to determine whether the nest microclimate is automatically maintained due to the size of the entrance. In order to examine this hypothesis, a numerical simulation was employed to predict the effects of the entrance length. The calculations were performed with 3D-virtual models that simulated the P. spinifex nest conditions, and the reliability of the simulations was experimentally examined by using gypsum-model nests and a P. spinifex nest. The ventilation effect was determined by blowing air through the nest at 1–3 m/s (airflow conditions); the airspeed was found to be higher in models with a longer entrance. The ventilation rate was also higher in models with longer entrances, suggesting that the P. spinifex nest is automatically ventilated by natural winds. Next, the thermal effect was calculated under condition of direct sunlight. Under a calm condition (airflow, 0 m/s), thermal convection and a small temperature drop were observed in the case of models with a long entrance, whereas the ventilation and thermoregulation effects seemed small. Under airflow conditions, the temperature at the mid combs steeply dropped due to the convective airflow through the entrance at 1–2 m/s, and at 3 m/s, most of the heat was eliminated due to high thermal conductivity of the mud envelope, rather than convection

    A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    Get PDF
    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t=0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform-density sphere, the phase-space evolution which the current method generates is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Then, excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs but needs no assumptions about symmetry of the system, the success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To be published in ApJ, Oct. 1, 1997. This preprint is also available at http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm

    Evolution of Massive Blackhole Triples I -- Equal-mass binary-single systems

    Full text link
    We present the result of NN-body simulations of dynamical evolution of triple massive blackhole (BH) systems in galactic nuclei. We found that in most cases two of the three BHs merge through gravitational wave (GW) radiation in the timescale much shorter than the Hubble time, before ejecting one BH through a slingshot. In order for a binary BH to merge before ejecting out the third one, it has to become highly eccentric since the gravitational wave timescale would be much longer than the Hubble time unless the eccentricity is very high. We found that two mechanisms drive the increase of the eccentricity of the binary. One is the strong binary-single BH interaction resulting in the thermalization of the eccentricity. The second is the Kozai mechanism which drives the cyclic change of the inclination and eccentricity of the inner binary of a stable hierarchical triple system. Our result implies that many of supermassive blackholes are binaries.Comment: 20 pages, 12 figure

    The Self-Regulated Growth of Supermassive Black Holes

    Full text link
    We present a series of simulations of the self--regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the MBH−σM_{BH}-\sigma and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more "fundamental" than other proposed correlations in that they reflect the physical mechanism driving the co-evolution of SMBHs and spheroids.Comment: 15 pages, 16 figures, accepted for publication in Ap
    • …
    corecore