54 research outputs found

    SHED-CM for ALS Treatment

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, characterized by the loss of upper and lower motor neurons, for which an effective treatment has yet to be developed. Previous reports have shown that excessive oxidative stress, related to mitochondrial dysfunction and the accumulation of misfolding protein, contributes to ALS pathology. In terms of treatment, it remains necessary to identify effective medicines for multiple therapeutic targets and have additive effects against several disorders. In this study, we investigated stem cells from human exfoliated deciduous teeth (SHED), which release many factors, such as neurotrophic factors and cytokines, and are applied to treat neurological diseases. Specifically, we examined whether SHED-conditioned medium (CM), i.e., the serum-free culture supernatant of SHED, reduced mutant SOD1-induced intracellular aggregates and neurotoxicity. We found that SHED-CM significantly suppressed the mutant SOD1-induced intracellular aggregates and neurotoxicity. The neuroprotective effects of SHED-CM are partly related to heat shock protein and the activation of insulin-like growth factor-1 receptor. SHED-CM also had a protective effect on induced pluripotent stem cell-derived motor neurons. Moreover, SHED-CM was effective against not only familial ALS but also sporadic ALS. Overall, these results suggest that SHED-CM could be a promising treatment for slowing the progression of ALS

    High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease

    Get PDF
    Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment

    Bone structural and metabolic response of caloric restriction in Wistar rats and a GH-IGF-1 axis-suppressed transgenic rat model.

    Get PDF
    The growth hormone?insulin-like growth factor-1 (GH?IGF-1) axis plays an important role in the effects of caloric restriction(CR) on lifespan extension and may elicit effects on bone metabolism in CR animals. We compared the effects of the GH?IGF-1 axis suppression and CR on bone metabolism. We used Wistar rats fed ad libitum (control group) or fed a 30% calorierestricted diet in CR group and heterozygous transgenic (F1) rats whose GH-IGF-1 axis is moderately suppressed. There was no significant difference in serum IGF-1 concentration between control and CR rats; however, IGF-1 was significantly lower inF1 rats than in other groups. The bone volume fraction (BV/TV) was significantly lower in CR than in the control. The mean SMI value in CR rats was marginally significant difference from that in control rats, Although there was no difference in serum IGF-1 concentrations between CR and control rats, bone volume was lower, and higher SMI was observed in the former. The serum IGF-1 levels in F1 rats were lower than those of controls, but the bone volume and SMI in F1 were not different. Therefore, the effects of bone metabolism in CR rats may be different from those in the GH-IGF-1 suppression rats

    Neuroprotective effect of 5-aminolevulinic acid against low inorganic phosphate in neuroblastoma SH-SY5Y cells

    Get PDF
    PiT-1 (encoded by SLC20A1) and PiT-2 (encoded by SLC20A2) are type-III sodium-dependent phosphate cotransporters (NaPiTs). Recently, SLC20A2 mutations have been found in patients with idiopathic basal ganglia calcification (IBGC), and were predicted to bring about an inability to transport Pi from the extracellular environment. Here we investigated the effect of low Pi loading on the human neuroblastoma SH-SY5Y and the human glioblastoma A172 cell lines. The results show a different sensitivity to low Pi loading and differential regulation of type-III NaPiTs in these cells. We also examined whether 5-aminolevulinic acid (5-ALA) inhibited low Pi loading-induced neurotoxicity in SH-SY5Y cells. Concomitant application of 5-ALA with low Pi loading markedly attenuated low Pi-induced cell death and mitochondrial dysfunction via the induction of HO-1 by p38 MAPK. The findings provide us with novel viewpoints to understand the pathophysiology of IBGC, and give a new insight into the clinical prevention and treatment of IBGC

    Nuclear relocation of DGKζ in cardiomyocytes under conditions of ischemia/reperfusion

    No full text
    Diacylglycerol (DG) and phosphatidic acid (PA) are generated under various conditions, such as ligand stimulation and several stresses. They serve as second messengers to respond to pathophysiological conditions. DG kinase (DGK) catalyzes DG to produce PA. It is regarded as a regulator of these lipid messengers. Previous studies show that DGKζ, a nuclear isozyme, translocates from the nucleus to the cytoplasm in hippocampal neurons under transient ischemia and never relocates to the nucleus after reperfusion. This study examined whether a similar phenomenon is observed in cardiomyocytes, which represent another type of postmitotic, terminally differentiated cell. We performed immunostaining on ischemic hearts induced by occlusion of the left anterior descending coronary artery and on primary cultured cardiomyocytes under oxygen-glucose deprivation (OGD). In the animal model, 10 min ischemia is sufficient to cause DGKζ to disappear from the nucleus in cardiomyocytes. However, DGKζ is observed again in the nucleus at 10 min following reperfusion after 10 min ischemia, which contrasts sharply with ischemic hippocampal neurons. Similar results were obtained from experiments using primary cultured cardiomyocytes under OGD conditions, except that DGKζ relocates autonomously, if at all, to the nucleus, even under continuous OGD conditions. Results suggest that DGKζ is involved in the acute phase of cellular response to ischemic stress in cardiomyocytes in a similar, but not identical, manner to that of neurons

    Each category.

    No full text
    This is the complete list of research themes and representative quotes. (TIF)</p
    corecore