145 research outputs found

    Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse

    Get PDF
    Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice (Dag1Y890F/Y890F) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established model of muscular dystrophy. Dag1Y890F/Y890F/mdx mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including α-sarcoglycan, α-/β-dystroglycan and sarcospan. Furthermore, Dag1Y890F/Y890F/mdx showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with mdx mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on Dag1Y890F/Y890F/mdx mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention

    Functional Anatomy of the Female Pelvic Floor

    Full text link
    The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72597/1/annals.1389.034.pd

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    Transgenic Overexpression of LARGE Induces α-Dystroglycan Hyperglycosylation in Skeletal and Cardiac Muscle

    Get PDF
    BACKGROUND: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored. METHODOLOGY/PRINCIPAL FINDINGS: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage. CONCLUSIONS/SIGNIFICANCE: This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation and α-dystroglycan hyperglycosylation in muscle should be safe

    Comparative effectiveness of Anti-IL5 and Anti-IgE biologic classes in patients with severe asthma eligible for both.

    Get PDF
    BACKGROUND: Patients with severe asthma may present with characteristics representing overlapping phenotypes, making them eligible for more than one class of biologic. Our aim was to describe the profile of adult patients with severe asthma eligible for both anti-IgE and anti-IL5/5R and to compare the effectiveness of both classes of treatment in real life. METHODS: This was a prospective cohort study that included adult patients with severe asthma from 22 countries enrolled into the International Severe Asthma registry (ISAR) who were eligible for both anti-IgE and anti-IL5/5R. The effectiveness of anti-IgE and anti-IL5/5R was compared in a 1:1 matched cohort. Exacerbation rate was the primary effectiveness endpoint. Secondary endpoints included long-term-oral corticosteroid (LTOCS) use, asthma-related emergency room (ER) attendance, and hospital admissions. RESULTS: In the matched analysis (n = 350/group), the mean annualized exacerbation rate decreased by 47.1% in the anti-IL5/5R group and 38.7% in the anti-IgE group. Patients treated with anti-IL5/5R were less likely to experience a future exacerbation (adjusted IRR 0.76; 95% CI 0.64, 0.89; p < 0.001) and experienced a greater reduction in mean LTOCS dose than those treated with anti-IgE (37.44% vs. 20.55% reduction; p = 0.023). There was some evidence to suggest that patients treated with anti-IL5/5R experienced fewer asthma-related hospitalizations (IRR 0.64; 95% CI 0.38, 1.08), but not ER visits (IRR 0.94, 95% CI 0.61, 1.43). CONCLUSIONS: In real life, both anti-IgE and anti-IL5/5R improve asthma outcomes in patients eligible for both biologic classes; however, anti-IL5/5R was superior in terms of reducing asthma exacerbations and LTOCS use

    Shaping Skeletal Growth by Modular Regulatory Elements in the Bmp5 Gene

    Get PDF
    Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body

    Composition and Function of Haemolymphatic Tissues in the European Common Shrew

    Get PDF
    BACKGROUND: Studies of wild animals responding to their native parasites are essential if we are to understand how the immune system functions in the natural environment. While immune defence may bring increased survival, this may come at a resource cost to other physiological traits, including reproduction. Here, we tested the hypothesis that wild common shrews (Sorex araneus), which produce large numbers of offspring during the one breeding season of their short life span, forgo investment in immunity and immune system maintenance, as increased longevity is unlikely to bring further opportunities for mating. In particular, we predicted that adult shrews, with shorter expected lifespans, would not respond as effectively as young animals to infection. METHODOLOGY/PRINCIPAL FINDINGS: We examined haemolymphatic tissues from wild-caught common shrews using light and transmission electron microscopy, applied in conjunction with immunohistology. We compared composition and function of these tissues in shrews of different ages, and the extent and type of inflammatory reactions observed in response to natural parasitic infections. All ages seemed able to mount systemic, specific immune responses, but adult shrews showed some signs of lymphatic tissue exhaustion: lymphatic follicles in adults (n = 21) were both smaller than those in sub-adults (n = 18; Wald = 11.1, p<0.05) and exhibited greater levels of depletion (Wald = 13.3, p<0.05). CONCLUSIONS/SIGNIFICANCE: Contrary to our expectations, shrews respond effectively to their natural parasites, and show little indication of immunosenescence as adults. The pancreas of Aselli, a unique lymphoid organ, may aid in providing efficient immune responses through the storage of large numbers of plasma cells. This may allow older animals to react effectively to previously encountered parasites, but infection by novel agents, and eventual depletion of plasma cell reserves, could both still be factors in the near-synchronous mortality of adult shrews observed shortly after breeding

    Assessing learning and memory in pigs

    Get PDF
    In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition
    corecore