2,200 research outputs found
Recommended from our members
Goal-Focused Emotion-Regulation Therapy (GET) for young adult survivors of testicular cancer: a pilot randomized controlled trial of a biobehavioral intervention protocol.
BackgroundTesticular cancer diagnosis and treatment, especially given its threat to sexuality and reproductive health, can be distressing in the formative period of young adulthood and the majority of young survivors experience impairing, distressing, and modifiable adverse outcomes that can persist long after medical treatment. These include psychological distress, impairment in pursuit of life goals, persistent physical side effects, elevated risk of secondary malignancies and chronic illness, and biobehavioral burden (e.g., enhanced inflammation, dysregulated diurnal stress hormones). However, few targeted interventions exist to assist young survivors in renegotiating life goals and regulating cancer-related emotions, and none focus on reducing the burden of morbidity via biobehavioral mechanisms. This paper describes the methodology of a randomized controlled biobehavioral trial designed to investigate the feasibility and preliminary impact of a novel intervention, Goal-focused Emotion-Regulation Therapy (GET), aimed at improving distress symptoms, emotion regulation, goal navigation skills, and stress-sensitive biomarkers in young adult testicular cancer patients.MethodsParticipants will be randomized to receive six sessions of GET or Individual Supportive Therapy (ISP) delivered over 8 weeks. In addition to indicators of intervention feasibility, we will measure primary (depressive and anxiety symptoms) and secondary (emotion regulation and goal navigation skills, career confusion) psychological outcomes prior to (T0), immediately after (T1), and 12 weeks after (T2) intervention. Additionally, identified biomarkers will be measured at baseline and at T2.DiscussionGET may have the potential to improve self-regulation across biobehavioral domains, improve overall cancer adjustment, and address the need for targeted supportive care interventions for young adult cancer survivors.Trial registrationClinicaltrials.gov, NCT04150848. Registered on 28 October 2019
Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice
We report direct single-laser excitation of the strictly forbidden
(6s^2)^1S_0 -(6s6p)^3P_0 clock transition in the even 174Yb isotope confined to
a 1D optical lattice. A small (~1.2 mT) static magnetic field was used to
induce a nonzero electric dipole transition probability between the clock
states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FHWM) with high
contrast were observed, demonstrating a record neutral-atom resonance quality
factor of 2.6x10^13. The previously unknown ac Stark shift-canceling (magic)
wavelength was determined to be 759.35+/-0.02 nm. This method for using the
metrologically superior even isotope can be easily implemented in current Yb
and Sr lattice clocks, and can create new clock possibilities in other alkaline
earth-like atoms such as Mg and Ca.Comment: Submitted to Physics Review Letter
Optical Lattice Induced Light Shifts in an Yb Atomic Clock
We present an experimental study of the lattice induced light shifts on the
1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The
``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394
799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz
on the 518 THz clock transition. Also investigated were the hyperpolarizability
shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2
two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By
tuning the lattice frequency over the two-photon resonances and measuring the
corresponding clock transition shifts, the hyperpolarizability shift was
estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the
magic wavelength. In addition, we have confirmed that a circularly polarized
lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate
that the differential polarizability and hyperpolarizability frequency shift
uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR
Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium
We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p)
3P0 optical transition in two odd isotopes of ytterbium. As the excitation
laser frequency is scanned, absorption is detected by monitoring the depletion
from an atomic cloud at ~70 uK in a magneto-optical trap. The measured
frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured
frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are
made with a femtosecond-laser frequency comb calibrated by the NIST cesium
fountain clock and represent nearly a million-fold reduction in uncertainty.
The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10
mHz, making them well-suited to support a new generation of optical atomic
clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure
Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils
Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Carbon (C) in soils persists on a range of timescales depending on physical, chemical, and biological processes that interact with soil organic matter (SOM) and affect its rate of decomposition. Together these processes determine the age distribution of soil C. Most attempts to measure this age distribution have relied on operationally defined fractions using properties like density, aggregate stability, solubility, or chemical reactivity. Recently, thermal fractionation, which relies on the activation energy needed to combust SOM, has shown promise for separating young from old C by applying increasing heat to decompose SOM. Here, we investigated radiocarbon (C-14) and C-13 of C released during thermal fractionation to link activation energy to the age distribution of C in bulk soil and components previously separated by density and chemical properties. While physically and chemically isolated fractions had very distinct mean C-14 values, they contributed C across the full temperature range during thermal analysis. Thus, each thermal fraction collected during combustion of bulk soil integrates contributions from younger and older C derived from components having different physical and chemical properties but the same activation energy. Bulk soil and all density and chemical fractions released progressively older and more C-13-enriched C with increasing activation energy, indicating that each operationally defined fraction itself was not homogeneous but contained a mix of C with different ages and degrees of microbial processing. Overall, we found that defining the full age distribution of C in bulk soil is best quantified by first separating particulate C prior to thermal fractionation of mineral-associated SOM. For the Podzol analyzed here, thermal fractions confirmed that similar to 95 % of the mineral-associated organic matter (MOM) had a relatively narrow C-14 distribution, while 5 % was very low in C-14 and likely reflected C from the < 2 mm parent shale material in the soil matrix. After first removing particulate C using density or size separation, thermal fractionation can provide a rapid technique to study the age structure of MOM and how it is influenced by different OM-mineral interactions
On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance
The Mauna Loa Observatory record of direct-beam solar irradiance measurements
for the years 1958-2010 is analysed to investigate the variation of clear-sky
terrestrial insolation with solar activity over more than four solar cycles.
The raw irradiance data exhibit a marked seasonal cycle, extended periods of
lower irradiance due to emissions of volcanic aerosols, and a long-term
decrease in atmospheric transmission independent of solar activity. After
correcting for these effects, it is found that clear-sky terrestrial irradiance
typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a
change of the same order of magnitude as the variations of the total solar
irradiance above the atmosphere. An investigation of changes in the clear-sky
atmospheric transmission fails to find a significant trend with sunspot number.
Hence there is no evidence for a yet unknown effect amplifying variations of
clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the
text to match final published versio
Records in a changing world
In the context of this paper, a record is an entry in a sequence of random
variables (RV's) that is larger or smaller than all previous entries. After a
brief review of the classic theory of records, which is largely restricted to
sequences of independent and identically distributed (i.i.d.) RV's, new results
for sequences of independent RV's with distributions that broaden or sharpen
with time are presented. In particular, we show that when the width of the
distribution grows as a power law in time , the mean number of records is
asymptotically of order for distributions with a power law tail (the
\textit{Fr\'echet class} of extremal value statistics), of order
for distributions of exponential type (\textit{Gumbel class}), and of order
for distributions of bounded support (\textit{Weibull class}),
where the exponent describes the behaviour of the distribution at the
upper (or lower) boundary. Simulations are presented which indicate that, in
contrast to the i.i.d. case, the sequence of record breaking events is
correlated in such a way that the variance of the number of records is
asymptotically smaller than the mean.Comment: 12 pages, 2 figure
- …