191 research outputs found
Factors Associated with Prenatal Folic Acid and Iron Supplementation Among 21,889 Pregnant women in Northern Tanzania: A Cross-Sectional Hospital-Based Study.
Folate and iron deficiency during pregnancy are risk factors for anaemia, preterm delivery, and low birth weight, and may contribute to poor neonatal health and increased maternal mortality. The World Health Organization recommends supplementation of folic acid (FA) and iron for all pregnant women at risk of malnutrition to prevent anaemia. We assessed the use of prenatal folic acid and iron supplementation among women in a geographical area with a high prevalence of anaemia, in relation to socio-demographic, morbidity and health services utilization factors. We analysed a cohort of 21,889 women who delivered at Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania, between 1999 and 2008. Logistic regression models were used to describe patterns of reported intake of prenatal FA and iron supplements. Prenatal intake of FA and iron supplements was reported by 17.2% and 22.3% of pregnant women, respectively. Sixteen percent of women reported intake of both FA and iron. Factors positively associated with FA supplementation were advanced maternal age (OR = 1.17, 1.02-1.34), unknown HIV status (OR = 1.54, 1.42-1.67), a diagnosis of anaemia during pregnancy (OR = 12.03, 9.66-14.98) and indicators of lower socioeconomic status. Women were less likely to take these supplements if they reported having had a malaria episode before (OR = 0.57, 0.53-0.62) or during pregnancy (OR = 0.45, 0.41-0.51), reported having contracted other infectious diseases (OR = 0.45, 0.42-0.49), were multiparous (OR = 0.73, 0.66-0.80), had preeclampsia/eclampsia (OR = 0.48, 0.38-0.61), or other diseases (OR = 0.55, 0.44-0.69) during pregnancy. Similar patterns of association emerged when iron supplementation alone and supplementation with both iron and FA were evaluated. FA and iron supplementation are low among pregnant women in Northern Tanzania, in particular among women with co-morbidities before or during pregnancy. Attempts should be made to increase supplementation both in general and among women with pregnancy complications
In vitro lead exposure changes DNA methylation and expression of IGF2 and PEG1/MEST
Epigenetic processes, such as changes in DNA methylation, likely mediate the link between environmental exposures in utero and altered gene expression. Differentially methylated regions (DMRs) that regulate imprinted genes may be especially vulnerable to environmental exposures since imprinting is established and maintained largely through DNA methylation, resulting in expression from only one parental chromosome. We used the human embryonic kidney cell line, HEK-293, to investigate the effects of exposure to physiologically relevant doses of lead acetate (Pb) on the methylation status of nine imprinted gene DMRs. We assessed mean methylation after seventy-two hours of Pb exposure (0-25 μg/dL) using bisulfite pyrosequencing. The PEG1/MEST and IGF2 DMRs had maximum methylation decreases of 9.6% (20 μg/dL; p< 0.005) and 3.8% (25 μg/dL; p< 0.005), respectively. Changes at the MEG3 DMRs had a maximum decrease in methylation of 2.9% (MEG3) and 1.8% (MEG3-IG) at 5μg/dL Pb, but were not statistically significant. The H19, NNAT, PEG3, PLAGL1, and SGCE/PEG10 DMRs showed a less than 0.5% change in methylation for (across the dose range used), and were deemed non-responsive to Pb in our model. Pb exposure below reportable/actionable levels increased expression of PEG1/MEST concomitant with decreased methylation. These results suggest that Pb exposure can stably alter the regulatory capacity of multiple imprinted DMRs
Associations between Maternal Cadmium Exposure with Risk of Preterm Birth and Low Birth Weight: Effect of Mediterranean Diet Adherence on Affected Prenatal Outcomes
Prenatal cadmium exposure at non-occupational levels has been associated with poor birth outcomes. The intake of essential metals, such as iron and selenium, may mitigate cadmium exposure effects. However, at high levels, these metals can be toxic. The role of dietary patterns rich in these metals is less studied. We used a linear and logistic regression in a cohort of 185 mother–infant pairs to assess if a Mediterranean diet pattern during pregnancy modified the associations between prenatal cadmium exposure and (1) birth weight and (2) preterm birth. We found that increased cadmium exposure during pregnancy was associated with lower birth weight (β = −210.4; 95% CI: −332.0, −88.8; p = 0.008) and preterm birth (OR = 0.11; 95% CI: 0.01, 0.72; p = 0.04); however, these associations were comparable in offspring born to women reporting high adherence to a Mediterranean diet (β = −274.95; 95% CI: −701.17, 151.26; p = 0.20) and those with low adherence (β = −64.76; 95% CI: −359.90, 230.37; p = 0.66). While the small sample size limits inference, our findings suggest that adherence to a Mediterranean dietary pattern may not mitigate cadmium exposure effects. Given the multiple organs targeted by cadmium and its slow excretion rate, larger studies are required to clarify these findings
Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains
Abstract Background Inadequate maternal nutrition during early fetal development can create permanent alterations in the offspring, leading to poor health outcomes. While nutrients involved in one-carbon cycle metabolism are important to fetal growth, associations with specific nutrients remain inconsistent. This study estimates associations between maternal vitamins B12, B6 (pyridoxal phosphate [PLP] and 4-pyridoxic acid [PA]), and homocysteine (Hcy) concentrations, offspring weight (birth weight and 3-year weight gain), and DNA methylation at four differentially methylated regions (DMRs) known to be involved in fetal growth and development (H19, MEG3, SGCE/PEG10, and PLAGL1). Methods Study participants (n = 496) with biomarker and birth weight data were enrolled as part of the Newborn Epigenetics STudy. Weight gain data were available for 273 offspring. Among 484 mother-infant pairs, DNA methylation at regulatory sequences of genomically imprinted genes was measured in umbilical cord blood DNA using bisulfite pyrosequencing. We used generalized linear models to estimate associations. Results Multivariate adjusted regression models revealed an inverse association between maternal Hcy concentration and male birth weight (β = −210.40, standard error (SE) = 102.08, p = 0.04). The offspring of the mothers in the highest quartile of B12 experienced lower weight gain between birth and 3 years compared to the offspring of the mothers in the lowest (β = −2203.03, SE = 722.49, p = 0.003). Conversely, maternal PLP was associated with higher weight gain in males; higher maternal PLP concentrations were also associated with offspring DNA methylation levels at the MEG3 DMR (p < 0.01). Conclusions While maternal concentrations of B12, B6, and Hcy do not associate with birth weight overall, they may play an important role in 3-year weight gain. This is the first study to report an association between maternal PLP and methylation at the MEG3 DMR which may be an important epigenetic tag for maternal B vitamin adequacy
Neighborhood and Family Environment of Expectant Mothers May Influence Prenatal Programming of Adult Cancer Risk: Discussion and an Illustrative DNA Methylation Example
Childhood stressors including physical abuse predict adult cancer risk. Prior research portrays this finding as indirect through coping behaviors including adult smoking or through increased toxic exposures during childhood. Little is known about potential direct causal mechanisms between early-life stressors and adult cancer. Because prenatal conditions can affect gene expression by altering DNA methylation with implications for adult health, we hypothesize that maternal stress may program methylation of cancer-linked genes during gametogenesis
HPV genotypes and cervical intraepithelial neoplasia in a multiethnic cohort in the southeastern USA
PURPOSE: For poorly understood reasons, invasive cervical cancer (ICC) incidence and mortality rates are higher in women of African descent. Oncogenic human papillomavirus (HPV) genotypes distribution may vary between European American (EA) and African-American (AA) women and may contribute to differences in ICC incidence. The current study aimed at disentangling differences in HPV distribution among AA and EA women. METHODS: Five-hundred and seventy-two women were enrolled at the time of colposcopic evaluation following an abnormal liquid-based cytology screen. HPV infections were detected using HPV linear array, and chi-squared tests and linear regression models were used to compare HPV genotypes across racial/ethnic groups by CIN status. RESULTS: Of the 572 participants, 494 (86 %) had detectable HPV; 245 (43 %) had no CIN lesion, 239 (42 %) had CIN1, and 88 (15 %) had CIN2/3. Seventy-three percent of all women were infected with multiple HPV genotypes. After adjusting for race, age, parity, income, oral contraception use, and current smoking, AAs were two times less likely to harbor HPV 16/18 (OR 0.48, 95 % CI 0.21–0.94, p = 0.03) when all women were considered. This association remained unchanged when only women with CIN2/3 lesions were examined (OR 0.22, 95 % CI 0.05–0.95, p = 0.04). The most frequent high-risk HPV genotypes detected among EAs were 16, 18, 56, 39, and 66, while HPV genotypes 33, 35, 45, 58, and 68 were the most frequent ones detected in AAs. CONCLUSIONS: Our data suggest that while HPV 16/18 are the most common genotypes among EA women with CIN, AAs may harbor different genotypes
Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood
BACKGROUND: Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk.
OBJECTIVES: The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development.
METHODS: Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression.
RESULTS: Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = -0.0014; 95% CI: -0.0023, -0.0005, p = 0.002), stronger in males (β = -0.0024; 95% CI: -0.0038, -0.0009, p = 0.003) than in females (β = -0.0009; 95% CI: -0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = -0.0013; 95% CI: -0.0023, -0.0003, p = 0.01) DMR methylation, but primarily in females, (β = -0.0017; 95% CI: -0.0029, -0.0006, p = 0.005) rather than in males, (β = -0.0004; 95% CI: -0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months.
CONCLUSIONS: Our findings provide evidence that early childhood lead exposure results in sex-dependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood.
CITATION: Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. 2016. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666-673; http://dx.doi.org/10.1289/ehp.1408577
Distribution of HPV genotypes in cervical intraepithelial lesions and cervical cancer in Tanzanian women
<p>Abstract</p> <p>Background</p> <p>Infection with human papillomavirus (HPV) is associated with uterine cervical intraepithelial neoplasia (CIN) and invasive cancers (ICC). Approximately 80% of ICC cases are diagnosed in under-developed countries. Vaccine development relies on knowledge of HPV genotypes characteristic of LSIL, HSIL and cancer; however, these genotypes remain poorly characterized in many African countries. To contribute to the characterization of HPV genotypes in Northeastern Tanzania, we recruited 215 women from the Reproductive Health Clinic at Kilimanjaro Christian Medical Centre. Cervical scrapes and biopsies were obtained for cytology and HPV DNA detection.</p> <p>Results</p> <p>79 out of 215 (36.7%) enrolled participants tested positive for HPV DNA, with a large proportion being multiple infections (74%). The prevalence of HPV infection increased with lesion grade (14% in controls, 67% in CIN1 cases and 88% in CIN2-3). Among ICC cases, 89% had detectable HPV. Overall, 31 HPV genotypes were detected; the three most common HPV genotypes among ICC were HPV16, 35 and 45. In addition to these genotypes, co-infection with HPV18, 31, 33, 52, 58, 68 and 82 was found in 91% of ICC. Among women with CIN2-3, HPV53, 58 and 84/83 were the most common. HPV35, 45, 53/58/59 were the most common among CIN1 cases.</p> <p>Conclusions</p> <p>In women with no evidence of cytological abnormalities, the most prevalent genotypes were HPV58 with HPV16, 35, 52, 66 and 73 occurring equally. Although numerical constraints limit inference, findings that 91% of ICC harbor only a small number of HPV genotypes suggests that prevention efforts including vaccine development or adjuvant screening should focus on these genotypes.</p
Periconceptional Maternal Mediterranean Diet Is Associated With Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes
Background: Maternal diet during pregnancy has been shown to influence the child neuro-developmental outcomes. Studies examining effects of dietary patterns on offspring behavior are sparse.Objective: Determine if maternal adherence to a Mediterranean diet is associated with child behavioral outcomes assessed early in life, and to evaluate the role of differentially methylated regions (DMRs) regulating genomically imprinted genes in these associations.Methods: Among 325 mother/infant pairs, we used regression models to evaluate the association between tertiles of maternal periconceptional Mediterranean diet adherence (MDA) scores derived from a Food Frequency Questionnaire, and social and emotional scores derived from the Infant Toddler Social and Emotional Assessment (ITSEA) questionnaire in the second year of life. Methylation of nine genomically imprinted genes was measured to determine if MDA was associated with CpG methylation.Results: Child depression was inversely associated with maternal MDA (Bonferroni-corrected p = 0.041). While controlling for false-discovery, compared to offspring of women with the lowest MDA tertile, those with MDA scores in middle and high MDA tertiles had decreased odds for atypical behaviors [OR (95% CI) = 0.40 (0.20, 0.78) for middle and 0.40 (0.17, 0.92) for highest tertile], for maladaptive behaviors [0.37 (0.18, 0.72) for middle tertile and 0.42 (0.18, 0.95) for highest tertile] and for an index of autism spectrum disorder behaviors [0.46 (0.23, 0.90) for middle and 0.35 (0.15, 0.80) for highest tertile]. Offspring of women with the highest MDA tertile were less likely to exhibit depressive [OR = 0.28 (0.12, 0.64)] and anxiety [0.42 (0.18, 0.97)] behaviors and increased odds of social relatedness [2.31 (1.04, 5.19)] behaviors when compared to low MDA mothers. Some associations varied by sex. Perinatal MDA score was associated with methylation differences for imprinted control regions of PEG10/SGCE [females: Beta (95% CI) = 1.66 (0.52, 2.80) – Bonferroni-corrected p = 0.048; males: -0.56 (-1.13, -0.00)], as well as both MEG3 and IGF2 in males [0.97 (0.00, 1.94)] and -0.92 (-1.65, -0.19) respectively.Conclusion: In this ethnically diverse cohort, maternal adherence to a Mediterranean diet in early pregnancy was associated with favorable neurobehavioral outcomes in early childhood and with sex-dependent methylation differences of MEG3, IGF2, and SGCE/PEG10 DMRs
- …