5 research outputs found

    Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?

    Get PDF
    We investigate the origin, the shape, the scatter, and the cosmic evolution in the observed relationship between specific angular momentum j⋆j_\star and the stellar mass M⋆M_\star in early-type (ETGs) and late-type galaxies (LTGs). Specifically, we exploit the observed star-formation efficiency and chemical abundance to infer the fraction f_\rm inf of baryons that infall toward the central regions of galaxies where star formation can occur. We find f_\rm inf\approx 1 for LTGs and ≈0.4\approx 0.4 for ETGs with an uncertainty of about 0.250.25 dex, consistent with a biased collapse. By comparing with the locally observed j⋆j_\star vs. M⋆M_\star relations for LTGs and ETGs we estimate the fraction fjf_j of the initial specific angular momentum associated to the infalling gas that is retained in the stellar component: for LTGs we find fj≈1.11+0.75−0.44f_j\approx 1.11^+0.75_-0.44, in line with the classic disc formation picture; for ETGs we infer fj≈0.64+0.20−0.16f_j\approx 0.64^+0.20_-0.16, that can be traced back to a z<1z<1 evolution via dry mergers. We also show that the observed scatter in the j⋆j_\star vs. M⋆M_\star relation for both galaxy types is mainly contributed by the intrinsic dispersion in the spin parameters of the host dark matter halo. The biased collapse plus mergers scenario implies that the specific angular momentum in the stellar components of ETG progenitors at z∌2z\sim 2 is already close to the local values, in pleasing agreement with observations. All in all, we argue such a behavior to be imprinted by nature and not nurtured substantially by the environment

    THE ANGULAR MOMENTUM DISTRIBUTION AND BARYON CONTENT OF STAR-FORMING GALAXIES AT z

    No full text
    corecore