756 research outputs found
Generating Equidistributed Meshes in 2D via Domain Decomposition
In this paper we consider Schwarz domain decomposition applied to the
generation of 2D spatial meshes by a local equidistribution principle. We
briefly review the derivation of the local equidistribution principle and the
appropriate choice of boundary conditions. We then introduce classical and
optimized Schwarz domain decomposition methods to solve the resulting system of
nonlinear equations. The implementation of these iterations are discussed, and
we conclude with numerical examples to illustrate the performance of the
approach
Phase separation and rotor self-assembly in active particle suspensions
Adding a non-adsorbing polymer to passive colloids induces an attraction
between the particles via the `depletion' mechanism. High enough polymer
concentrations lead to phase separation. We combine experiments, theory and
simulations to demonstrate that using active colloids (such as motile bacteria)
dramatically changes the physics of such mixtures. First, significantly
stronger inter-particle attraction is needed to cause phase separation.
Secondly, the finite size aggregates formed at lower inter-particle attraction
show unidirectional rotation. These micro-rotors demonstrate the self assembly
of functional structures using active particles. The angular speed of the
rotating clusters scales approximately as the inverse of their size, which may
be understood theoretically by assuming that the torques exerted by the
outermost bacteria in a cluster add up randomly. Our simulations suggest that
both the suppression of phase separation and the self assembly of rotors are
generic features of aggregating swimmers, and should therefore occur in a
variety of biological and synthetic active particle systems.Comment: Main text: 6 pages, 5 figures. Supplementary information: 5 pages, 4
figures. Supplementary movies available from
httP://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1116334109/-/DCSupplementa
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1977-78: A Summary Report
Annual report of the Gulf Coast Research Laboratory for fiscal year 1977-1978
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1976-77: A Summary Report
Annual report of the Gulf Coast Research Laboratory for fiscal year 1976-1977
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1975-76: A Summary Report
Annual report of the Gulf Coast Research Laboratory for fiscal year 1975-1976
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1979-80: A Summary Report
Annual report of the Gulf Coast Research Laboratory from fiscal year 1979-1980
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1978-79: A Summary Report
Annual report of the Gulf Coast Research Laboratory for fiscal year 1978-1979
Activities of the Gulf Coast Research Laboratory During Fiscal Year 1979-80: A Summary Report
Annual report of the Gulf Coast Research Laboratory from fiscal year 1979-1980
Active and driven hydrodynamic crystals
Motivated by the experimental ability to produce monodisperse particles in
microfluidic devices, we study theoretically the hydrodynamic stability of
driven and active crystals. We first recall the theoretical tools allowing to
quantify the dynamics of elongated particles in a confined fluid. In this
regime hydrodynamic interactions between particles arise from a superposition
of potential dipolar singularities. We exploit this feature to derive the
equations of motion for the particle positions and orientations. After showing
that all five planar Bravais lattices are stationary solutions of the equations
of motion, we consider separately the case where the particles are passively
driven by an external force, and the situation where they are self-propelling.
We first demonstrate that phonon modes propagate in driven crystals, which are
always marginally stable. The spatial structure of the eigenmodes depend solely
on the symmetries of the lattices, and on the orientation of the driving force.
For active crystals, the stability of the particle positions and orientations
depends not only on the symmetry of the crystals but also on the perturbation
wavelengths and on the crystal density. Unlike unconfined fluids, the stability
of active crystals is independent of the nature of the propulsion mechanism at
the single particle level. The square and rectangular lattices are found to be
linearly unstable at short wavelengths provided the volume fraction of the
crystals is high enough. Differently, hexagonal, oblique, and face-centered
crystals are always unstable. Our work provides a theoretical basis for future
experimental work on flowing microfluidic crystals.Comment: 10 pages, 10 figure
- …
