256 research outputs found

    Rapid genotype imputation from sequence without reference panels

    Get PDF
    Inexpensive genotyping methods are essential for genetic studies requiring large sample sizes. In human studies, array-based microarrays and high-density haplotype reference panels allow efficient genotype imputation for this purpose. However, these resources are typically unavailable in non-human settings. Here we describe a method (STITCH) for imputation based only on sequencing read data, without requiring additional reference panels or array data. We demonstrate its applicability even in settings of extremely low sequencing coverage, by accurately imputing 5.7 million SNPs at a mean r(2) value of 0.98 in 2,073 outbred laboratory mice (0.15× sequencing coverage). In a sample of 11,670 Han Chinese (1.7× coverage), we achieve accuracy similar to that of alternative approaches that require a reference panel, demonstrating that our approach can work for genetically diverse populations. Our method enables straightforward progression from low-coverage sequence to imputed genotypes, overcoming barriers that at present restrict the application of genome-wide association study technology outside humans

    SNPpy - Database Management for SNP Data from Genome Wide Association Studies

    Get PDF
    Background: We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS). This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP) data. SNPpy and its dependencies are open source software. Results: The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. Conclusions: By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Measuring changes in self-concept: a qualitative evaluation of outcome questionnaires in people having acupuncture for their chronic health problems

    Get PDF
    BACKGROUND: Changes in self-concept are an important potential outcome for many interventions for people with long-term conditions. This study sought to identify and evaluate outcome questionnaires suitable for quantifying changes in self-concept in people with long-term conditions, in the context of treatment with acupuncture and Chinese medicine. METHODS: A literature search was followed by an evaluation of three questionnaires: The Wellbeing Questionnaire W-BQ12, the Patient Enablement Instrument (PEI), and the Arizona Integrative Outcome Scale (AIOS). A convenience sample of 23 people completed the questionnaires on two occasions and were interviewed about their experience and their questionnaire responses. All acupuncturists were interviewed. RESULTS: Changes in self-concept were common and emerged over time. The three questionnaires had different strengths and weaknesses in relation to measuring changes in self-concept. The generic AIOS had face validity and was sensitive to changes in self-concept over time, but it lacked specificity. The PEI was sensitive and specific in measuring these changes but had lower acceptability. The sensitivity of the W-BQ12 was affected by initial high scores (ceiling effect) and a shorter timescale but was acceptable and is suitable for repeated administration. The PEI and W-BQ12 questionnaires worked well in combination. CONCLUSION: Changes in self-concept are important outcomes of complex interventions for people with long-term illness and their measurement requires carefully evaluated tools and long-term follow-up. The literature review and the analysis of the strengths and weaknesses of the questionnaires is a resource for other researchers. The W-BQ12 and the PEI both proved useful for this population and a larger quantitative study is planned

    Genetics of callous-unemotional behavior in children

    Get PDF
    Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU

    A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data.</p> <p>Methods</p> <p>A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information.</p> <p>Results</p> <p>The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available.</p> <p>Conclusions</p> <p>The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets.</p

    A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies

    Get PDF
    Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Get PDF
    Abstract Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline
    corecore