650 research outputs found
Rotationally invariant proof of Bell's theorem without inequalities
The singlet state of two spin-3/2 particles allows a proof of Bell's theorem
without inequalities with two distinguishing features: any local observable can
be regarded as an Einstein-Podolsky-Rosen element of reality, and the
contradiction with local realism occurs not only for some specific local
observables but for any rotation whereof.Comment: REVTeX4, 3 page
Effect of boundaries on the force distributions in granular media
The effect of boundaries on the force distributions in granular media is
illustrated by simulations of 2D packings of frictionless, Hertzian spheres. To
elucidate discrepancies between experimental observations and theoretical
predictions, we distinguish between the weight distribution {\cal P} (w)
measured in experiments and analyzed in the q-model, and the distribution of
interparticle forces P(f). The latter one is robust, while {\cal P}(w) can be
obtained once the local packing geometry and P(f) are known. By manipulating
the (boundary) geometry, we show that {\cal P}(w) can be varied drastically.Comment: 4 pages, 4 figure
Modeling relaxation and jamming in granular media
We introduce a stochastic microscopic model to investigate the jamming and
reorganization of grains induced by an object moving through a granular medium.
The model reproduces the experimentally observed periodic sawtooth fluctuations
in the jamming force and predicts the period and the power spectrum in terms of
the controllable physical parameters. It also predicts that the avalanche
sizes, defined as the number of displaced grains during a single advance of the
object, follow a power-law, , where the exponent is
independent of the physical parameters
Assessing environmental pollution in birds: a new methodological approach for interpreting bioaccumulation of trace elements in feather shafts using geochemical sediment data
Environmental trace element composition can have an important impact on ecosystem and population health as well individual fitness. Therefore, carefully assessing bioaccumulation of trace elements is central to studies investigating the ecological impact of pollution. Colonial birds are important bioindicators since non-invasive sampling can easily be achieved through sampling of chick feathers, which controls for some confounding factors of variability (age and environmental heterogeneity). However, an additional confounding factor, external contamination (ExCo), which remains even after washing feathers, has frequently been overlooked in the literature. We developed a new method to reliably interpret bioaccumulation of 10 trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn and Zn) in feathers using chicks of a colonial species: the Greater Flamingo, Phoenicopterus roseus. First, only shafts were used to remove ExCo retained in vanes. Secondly, we applied a thorough washing procedure. Thirdly, we applied a new analytical method to control for ExCo, which assumes that ExCo is mainly due to adhered sediment particles and that the relative concentration of each trace element will be similar to the sediment geochemical composition of sampling sites. We validated this new methodology by comparing trace element composition and particle composition (by scanning electron microscopy and mass spectrometry) of washed and unwashed feathers. The washing procedure removed >99% of K indicating that most of the ExCo from salt was removed. Scanning electron microscopy and mass spectrometry revealed that some sediment particles remained after washing, especially clays which are likely to severely bias bioaccumulation interpretation. We successfully controlled for ExCo by calculating the ratio of ExCo due to sediment using the geochemical fingerprint of sediment samples. Our methodology leads to conservative estimates of bioaccumulation for As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn and Zn. We have validated a new more reliable method of analysing trace element concentrations in feathers, which effectively controls for ExCo, if geochemical sediment data can be meaningfully compared to ExCo of feathers. We have demonstrated that overlooking ExCo leads to potentially erroneous conclusions, and we urge that the method applied in this study be considered in future studies.Peer Reviewe
Mechanisms for slow strengthening in granular materials
Several mechanisms cause a granular material to strengthen over time at low
applied stress. The strength is determined from the maximum frictional force
F_max experienced by a shearing plate in contact with wet or dry granular
material after the layer has been at rest for a waiting time \tau. The layer
strength increases roughly logarithmically with \tau -only- if a shear stress
is applied during the waiting time. The mechanisms of strengthening are
investigated by sensitive displacement measurements and by imaging of particle
motion in the shear zone. Granular matter can strengthen due to a slow shift in
the particle arrangement under shear stress. Humidity also leads to
strengthening, but is found not to be its sole cause. In addition to these time
dependent effects, the static friction coefficient can also be increased by
compaction of the granular material under some circumstances, and by cycling of
the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.
Properties of layer-by-layer vector stochastic models of force fluctuations in granular materials
We attempt to describe the stress distributions of granular packings using
lattice-based layer-by-layer stochastic models that satisfy the constraints of
force and torque balance and non-tensile forces at each site. The inherent
asymmetry in the layer-by-layer approach appears to lead to an asymmetric force
distribution, in disagreement with both experiments and general symmetry
considerations. The vertical force component probability distribution is robust
and in agreement with predictions of the scalar q model while the distribution
of horizontal force components is qualitatively different and depends on the
details of implementation.Comment: 18 pages, 12 figures (with subfigures), 1 table. Uses revtex,
epsfig,subfigure, and cite. Submitted to PRE. Plots have been bitmapped.
High-resolution version is available. Email [email protected] or
download from http://rainbow.uchicago.edu/~mbnguyen/research/vm.htm
Quantum Cryptography Using Single Particle Entanglement
A quantum cryptography scheme based on entanglement between a single particle
state and a vacuum state is proposed. The scheme utilizes linear optics devices
to detect the superposition of the vacuum and single particle states. Existence
of an eavesdropper can be detected by using a variant of Bell's inequality.Comment: 4 pages, 3figures, revte
NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium
A three-dimensional granular system fluidized by vertical container
vibrations was studied using pulsed field gradient (PFG) NMR coupled with
one-dimensional magnetic resonance imaging (MRI). The system consisted of
mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4
was sufficiently low to achieve a nearly time-independent granular fluid. Using
NMR, the vertical profiles of density and granular temperature were directly
measured, along with the distributions of vertical and horizontal grain
velocities. The velocity distributions showed modest deviations from
Maxwell-Boltzmann statistics, except for the vertical velocity distribution
near the sample bottom which was highly skewed and non-Gaussian. Data taken for
three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit
to a hydrodynamic theory, which successfully models the density and temperature
profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure
Making things happen : a model of proactive motivation
Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
Calibration of a Neutron Polarimeter
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
- …