16,308 research outputs found

    Fringe Science: Defringing CCD Images with Neon Lamp Flat Fields

    Full text link
    Fringing in CCD images is troublesome from the aspect of photometric quality and image flatness in the final reduced product. Additionally, defringing during calibration requires the inefficient use of time during the night to collect and produce a "supersky" fringe frame. The fringe pattern observed in a CCD image for a given near-IR filter is dominated by small thickness variations across the detector with a second order effect caused by the wavelength extent of the emission lines within the bandpass which produce the interference pattern. We show that essentially any set of emission lines which generally match the wavelength coverage of the night sky emission lines within a bandpass will produce an identical fringe pattern. We present an easy, inexpensive, and efficient method which uses a neon lamp as a flat field source and produces high S/N fringe frames to use for defringing an image during the calibration process.Comment: accepted to PAS

    A Computer Simulation Model of Waterhyacinth and Weevil Interactions

    Get PDF
    A personal computer simulation model termed INSECT has been developed to evaluate biological control of waterhyacinth (Eichhornia crassipes (Mart.) Solms.) by two species of weevil (Neochetina eichhorniae Warner, and N. bruchi Hustache). The model results were compared with the data from three different locations. For each data set, the simulated plant biomass, adult and larva populations were plotted aqainst the 95% confidence intervals of the actual field observations. In many cases, the simulation results were within the 95% confidence intervals, and especially during the growing season, they indicated trends similar to those seen in the field data. However, there were discrepancies in both the magnitude and the trend for early and the late periods of the year. These initial results suggest that development of a model to simulate the impact of a biocontrol agent on waterhyacinth populations is a feasible approach to better understand the interactions within this control system

    A model for the screen printing of Newtonian fluids

    Get PDF
    A preliminary investigation into aspects of the off-contact screen-printing process is presented. A mathematical model for the printing of a thin film of Newtonian fluid is proposed, in which the screen is modelled as a permeable membrane, and the entire region above and below the screen is flooded. By drawing upon widely used industrial circuit printing practices, the distinguished limit of greatest interest to this industry is identified. Numerical and asymptotic solutions of this distinguished limit are presented that reproduce many of the features observed in industrial screen-printing

    A theoretical model for single molecule incoherent scanning tunneling spectroscopy

    Full text link
    Single molecule scanning tunneling spectroscopy (STS), with dephasing due to elastic and inelastic scattering, is of some current interest. Motivated by this, we report an extended Huckel theory (EHT) based mean-field Non-equilibrium Green's function (NEGF) transport model with electron-phonon scattering treated within the self-consistent Born approximation (SCBA). Furthermore, a procedure based on EHT basis set modification is described. We use this model to study the effect of the temperature dependent dephasing, due to low lying modes in far-infrared range for which hw<<kT, on the resonant conduction through highest occupied molecular orbital (HOMO) level of a phenyl dithiol molecule sandwiched between two fcc-Au(111) contacts. Furthermore, we propose to include dephasing in room temperature molecular resonant conduction calculations.Comment: 12 pages, 5 figure
    • …
    corecore