201 research outputs found
Gradient Photonic Materials Based on One‐Dimensional Polymer Photonic Crystals
In nature, animals such as chameleons are well‐known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work. The system consists of a 1D polymer photonic crystal on a centimeter scale on top of an elastic poly(dimethylsiloxane) substrate with a gradient in stiffness. In the unstrained state, this system reveals a uniform red reflectance over the entire sample. Upon deformation, a gradient in local strain of the substrate is formed and transferred to the photonic crystal. Depending on the magnitude of this local strain, the thickness of the photonic crystal decreases continuously, resulting in a position‐dependent blue shift of the reflectance peak and hence the color in a rainbow‐like fashion. Using more sophisticated hard‐soft‐hard‐soft‐hard gradient elastomers enables the realization of stripe‐like reflectance patterns. Thus, this approach allows for the tunable formation of reflectance gradients and complex reflectance patterns. Envisioned applications are in the field of mechanochromic sensors, telemedicine, smart materials, and metamaterials
SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies
Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear
Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions
The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer
Measurements of atmospheric turbulence made over the Arctic pack ice during
the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to
determine the limits of applicability of Monin-Obukhov similarity theory (in
the local scaling formulation) in the stable atmospheric boundary layer. Based
on the spectral analysis of wind velocity and air temperature fluctuations, it
is shown that, when both of the gradient Richardson number, Ri, and the flux
Richardson number, Rf, exceed a 'critical value' of about 0.20 - 0.25, the
inertial subrange associated with the Richardson-Kolmogorov cascade dies out
and vertical turbulent fluxes become small. Some small-scale turbulence
survives even in this supercritical regime, but this is non-Kolmogorov
turbulence, and it decays rapidly with further increasing stability. Similarity
theory is based on the turbulent fluxes in the high-frequency part of the
spectra that are associated with energy-containing/flux-carrying eddies.
Spectral densities in this high-frequency band diminish as the
Richardson-Kolmogorov energy cascade weakens; therefore, the applicability of
local Monin-Obukhov similarity theory in stable conditions is limited by the
inequalities Ri < Ri_cr and Rf < Rf_cr. However, it is found that Rf_cr = 0.20
- 0.25 is a primary threshold for applicability. Applying this prerequisite
shows that the data follow classical Monin-Obukhov local z-less predictions
after the irrelevant cases (turbulence without the Richardson-Kolmogorov
cascade) have been filtered out.Comment: Boundary-Layer Meteorology (Manuscript submitted: 16 February 2012;
Accepted: 10 September 2012
Recommended from our members
Protecting labor rights in preferential trade agreements: the role of trade unions, left governments, and skilled labor
This paper investigates variation in the design of labor provisions in preferential trade agreements (PTAs) by focusing on the power of trade unions, the role of government partisanship, and the relative strength of skilled labor. We expect strong trade unions and left-leaning governments to be associated with more, and more far-reaching labor provisions in PTAs. We also expect the strength of skilled workers relative to the strength of unskilled workers to negatively correlate with the depth of labor provisions in PTAs. In addition, the effect of trade unions should be conditional on both the presence of left government and democracy. We test these hypotheses relying on an original dataset of labor provisions included in 483 PTAs signed between 1990 and 2016. This dataset covers 140 different labor provisions that relate to six overarching dimensions. The quantitative analysis finds support for the expectations concerning the influence of trade unions and the role of a country’s skill profile
Discovery and characterisation of two Neptune-mass planets orbiting HD 212729 with TESS
We report the discovery of two exoplanets orbiting around HD 212729
(TOI\,1052, TIC 317060587), a K star with V=9.51 observed by
TESS in Sectors 1 and 13. One exoplanet, TOI-1052b, is Neptune-mass and
transits the star, and an additional planet TOI-1052c is observed in radial
velocities but not seen to transit. We confirm the planetary nature of
TOI-1052b using precise radial velocity observations from HARPS and determined
its parameters in a joint RV and photometry analysis. TOI-1052b has a radius of
R, a mass of M, and
an orbital period of 9.14 days. TOI-1052c does not show any transits in the
TESS data, and has a minimum mass of M and an
orbital period of 35.8 days, placing it just interior to the 4:1 mean motion
resonance. Both planets are best fit by relatively high but only marginally
significant eccentricities of for planet b and
for planet c. We perform a dynamical analysis and
internal structure model of the planets as well as deriving stellar parameters
and chemical abundances. The mean density of TOI-1052b is g
cm consistent with an internal structure similar to Neptune. A nearby
star is observed in Gaia DR3 with the same distance and proper motion as
TOI-1052, at a sky projected separation of ~1500AU, making this a potential
wide binary star system.Comment: Accepted to MNRAS. 11 page
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma
The neurodegenerative disease glaucoma is characterised by the progressive death of retinal ganglion cells (RGCs) and structural damage to the optic nerve (ON). New insights have been gained into the pathogenesis of glaucoma through the use of rodent models; however, a coherent picture of the early pathology remains elusive. Here, we use a validated, experimentally induced rat glaucoma model to address fundamental issues relating to the spatio-temporal pattern of RGC injury. The earliest indication of RGC damage was accumulation of proteins, transported by orthograde fast axonal transport within axons in the optic nerve head (ONH), which occurred as soon as 8 h after induction of glaucoma and was maximal by 24 h. Axonal cytoskeletal abnormalities were first observed in the ONH at 24 h. In contrast to the ONH, no axonal cytoskeletal damage was detected in the entire myelinated ON and tract until 3 days, with progressively greater damage at later time points. Likewise, down-regulation of RGC-specific mRNAs, which are sensitive indicators of RGC viability, occurred subsequent to axonal changes at the ONH and later than in retinas subjected to NMDA-induced somatic excitotoxicity. After 1 week, surviving, but injured, RGCs had initiated a regenerative-like response, as delineated by Gap43 immunolabelling, in a response similar to that seen after ON crush. The data presented here provide robust support for the hypothesis that the ONH is the pivotal site of RGC injury following moderate elevation of IOP, with the resulting anterograde degeneration of axons and retrograde injury and death of somas
In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer
The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society
- …