230 research outputs found

    Stroke-Induced Respiratory Dysfunction Is Associated With Cognitive Decline

    Get PDF
    BACKGROUND: Respiratory dysfunction is a common complication of stroke, with an incidence of over 60%. Despite the high prevalence of stroke-induced respiratory dysfunction, how disordered breathing influences recovery and cognitive outcomes after ischemic stroke is unknown. We hypothesized that stroke induces chronic respiratory dysfunction, breathing instability, and apnea in mice, which would contribute to higher mortality and greater poststroke cognitive deficits. METHODS: Mice were subjected to a 60-minute transient middle cerebral artery occlusion or permanent distal middle cerebral artery occlusion. Whole body plethysmography was performed on C57BL/6 young (2-3 months) and aged (20 months) male and female mice. Animals were exposed to a variety of gas conditions to assess the contribution of peripheral and central chemoreceptors. A battery of cognitive tests was performed to examine behavioral function. RESULTS: Middle cerebral artery occlusion led to disordered breathing characterized by hypoventilation and apneas. Cognitive decline correlated with the severity of disordered breathing. Distal permanent middle cerebral artery occlusion, which produces a smaller cortical infarct, also produced breathing disorders and cognitive impairment but only in aged mice. CONCLUSIONS: Our data suggest that poststroke apnea is associated with cognitive decline and highlights the influence of aging on breathing disorders after stroke. Therefore, the treatment of respiratory instability may be a viable approach to improving cognitive outcomes after stroke

    Persistent Magnetic Wreaths in a Rapidly Rotating Sun

    Get PDF
    When our Sun was young it rotated much more rapidly than now. Observations of young, rapidly rotating stars indicate that many possess substantial magnetic activity and strong axisymmetric magnetic fields. We conduct simulations of dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical harmonic (ASH) code to explore the complex coupling between rotation, convection and magnetism. Here we study dynamo action realized in the bulk of the convection zone for a system rotating at three times the current solar rotation rate. We find that substantial organized global-scale magnetic fields are achieved by dynamo action in this system. Striking wreaths of magnetism are built in the midst of the convection zone, coexisting with the turbulent convection. This is a surprise, for it has been widely believed that such magnetic structures should be disrupted by magnetic buoyancy or turbulent pumping. Thus, many solar dynamo theories have suggested that a tachocline of penetration and shear at the base of the convection zone is a crucial ingredient for organized dynamo action, whereas these simulations do not include such tachoclines. We examine how these persistent magnetic wreaths are maintained by dynamo processes and explore whether a classical mean-field α\alpha-effect explains the regeneration of poloidal field.Comment: 17 pages, 9 figures, 1 appendix, emulateapj format; published version of sections 3-4, 7 and appendix from arXiv:0906.240

    Weakly dispersive modal pulse propagation in the North Pacific Ocean

    Get PDF
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America or personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3386, doi:10.1121/1.4820882.The propagation of weakly dispersive modal pulses is investigated using data collected during the 2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal pulses are characterized by weak dispersion- and scattering-induced pulse broadening; such modal pulses experience minimal propagation-induced distortion and are thus well suited to communications applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dispersive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly dispersive modal pulse, a transmitted communications signal can be recovered without performing channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR) and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR result in larger BERs.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-06-1-0245, N00014-08-1-0195, and N00014-11-1-0194

    Analysis of Deep Seafloor Arrivals observed on NPAL04

    Get PDF
    This report gives an overview of the analysis that was done on Deep Seafloor Arrivals since they were initially presented in Stephen et al (2009). All of the NPAL04/LOAPEX (North Pacific Acoustic Laboratory, 2004/ Long Range Ocean Acoustic Propagation Experiment) data on three ocean bottom seismometers (OBSs) at ~5,000m depth and the deepest element of the deep vertical line array (DVLA) at 4250m depth has been analyzed. A distinctive pattern of late arrivals was observed on the three OBSs for transmissions from T500 to T2300. The delays of these arrivals with respect to the parabolic equation predicted (PEP) path were the same for all ranges from 500 to 2300km, indicating that the delay was introduced near the receivers. At 500km range the same arrival was observed throughout the water column on the DVLA. We show that arrivals in this pattern converted from a PEP path to a bottom-diffracted surface reflected (BDSR) path at an off-geodesic seamount.Funding was provided by the Office of Naval Research under Contract No. N00014-10-1-0510

    Modal analysis of the range evolution of broadband wavefields in the North Pacific Ocean : low mode numbers

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4409-4427, doi:10.1121/1.4707431.The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-08-1-0195, N00014-06-1-0245, and N0014-11-1-0194

    Bottom interacting sound at 50 km range in a deep ocean environment

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 132 (2012): 2224-2231, doi:10.1121/1.4747617.Data collected during the 2004 Long-range Ocean Acoustic Propagation Experiment provide absolute intensities and travel times of acoustic pulses at ranges varying from 50 to 3200 km. In this paper a subset of these data is analyzed, focusing on the effects of seafloor reflections at the shortest transmission range of approximately 50 km. At this range bottom-reflected (BR) and surface-reflected, bottom-reflected energy interferes with refracted arrivals. For a finite vertical receiving array spanning the sound channel axis, a high mode number energy in the BR arrivals aliases into low mode numbers because of the vertical spacing between hydrophones. Therefore, knowledge of the BR paths is necessary to fully understand even low mode number processes. Acoustic modeling using the parabolic equation method shows that inclusion of range-dependent bathymetry is necessary to get an acceptable model-data fit. The bottom is modeled as a fluid layer without rigidity, without three dimensional effects, and without scattering from wavelength-scale features. Nonetheless, a good model-data fit is obtained for sub-bottom properties estimated from the data.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014- 10-1-0987, N00014-11-1-0194, and N00014-10-1-0510

    NPAL04 OBS data analysis part 1 : kinematics of deep seafloor arrivals

    Get PDF
    These notes provide supporting information for a JASA (Journal of the Acoustical Society of America) LttE (Letter to the Editor) manuscript, "Deep seafloor arrivals: A new class of arrivals in long-range ocean acoustic propagation" (Stephen et al., submitted). It addresses five issues raised by the co-authors: 1) incorrect processing for the time-compressed traces at T2300 and T3200 that appeared in an early version of the LttE (T2300, T3200 … refer to transmissions at 2300, 3200km etc from the DVLA (Deep Vertical Line Array)), 2) processing issues, including the trade-offs between coherent and incoherent stacking and corrections for the effects of moving sources and receivers and tidal currents (Doppler), 4) the distinction between "deep shadow zone arrivals", which occur below the turning points in Parabolic Equation (PE) models, and "deep seafloor arrivals", which appear dominantly on the Ocean Bottom Seismometer (OBS) but are either very weak or absent on the deepest element in the DVLA and do not coincide with turning points in the PE model (some of these OBS late arrivals occur after the finale region), 4) the role of surface-reflected bottomreflected (SRBR) paths in explaining the late arriving energy, and 5) generally reconciling the OBS analysis with work by other North Pacific Acoustic Laboratory (NPAL) investigators and Dushaw et al (1999).Funding was provided by the Office of Naval Research through Contract No. N00014-06-1-0222

    Sequence locally, think globally:The Darwin tree of life project

    Get PDF
    The goals of the Earth Biogenome Project—to sequence the genomes of all eukaryotic life on earth—are as daunting as they are ambitious. The Darwin Tree of Life Project was founded to demonstrate the credibility of these goals and to deliver at-scale genome sequences of unprecedented quality for a biogeographic region: the archipelago of islands that constitute Britain and Ireland. The Darwin Tree of Life Project is a collaboration between biodiversity organizations (museums, botanical gardens, and biodiversity institutes) and genomics institutes. Together, we have built a workflow that collects specimens from the field, robustly identifies them, performs sequencing, generates high-quality, curated assemblies, and releases these openly for the global community to use to build future science and conservation efforts.</jats:p

    Focally perfused succinate potentiates brain metabolism in head injury patients.

    Get PDF
    Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-13C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of 13C-labelled metabolites (six patients). Metabolites 2,3-13C2 malate and 2,3-13C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-13C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD+ by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-13C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and 13C-labelling patterns in metabolites.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Medical Research Council (Grant Nos. G0600986 ID79068 and G1002277 ID98489) and National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: IJ – Medical Research Council (Grant no. G1002277 ID 98489) and National Institute for Health Research Biomedical Research Centre, Cambridge; KLHC – National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); CG – the Canadian Institute of Health Research; AH – Medical Research Council/Royal College of Surgeons of England Clinical Research Training Fellowship (Grant no. G0802251) and Raymond and Beverly Sackler Fellowship; DKM and JDP – National Institute for Health Research Senior Investigator Awards; PJH – National Institute for Health Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship and the National Institute for Health Research Biomedical Research Centre, Cambridge

    Deep seafloor arrivals : an unexplained set of arrivals in long-range ocean acoustic propagation

    Get PDF
    Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 599-606, doi:10.1121/1.3158826.Receptions, from a ship-suspended source (in the band 50–100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), “deep seafloor arrivals,” that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.The LOAPEX source deployments, the moored DVLA receiver deployments, and some post-cruise data reduction and analysis were funded by the Office of Naval Research under Award Nos. N00014-1403-1-0181, N00014-03-1-0182, and N00014-06-1-0222. Additional post-cruise analysis support was provided to RAS through the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography. The OBS/Hs used in the experiment were provided by Scripps Institution of Oceanography under the U.S. National Ocean Bottom Seismic Instrumentation Pool (SIO-OBSIP—http://www.obsip.org). To cover the costs of the OBS/H deployments funds were paid to SIO-OBSIP from the National Science Foundation and from the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute
    corecore