6,279 research outputs found

    A detailed X-ray investigation of zeta Puppis IV. Further characterization of the variability

    Get PDF
    Previously, the X-ray emission of zeta Puppis was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length. The origin of these changes was proposed to be linked to large-scale structures in the wind, but further characterization of the variability at high energies was needed. Since then, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. We analysed these new X-ray data, revisited the old data, and compared X-ray with optical data, including when simultaneous. We found that the behaviour in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, zeta Puppis was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78d, although the simultaneous optical behaviour is unknown. The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.Comment: accepted for publication by A&

    The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars

    Full text link
    A primary goal of the FUSE mission is to understand the origin of the O VI ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along sightlines to OB-type stars, these interstellar components are usually blended with O VI stellar wind profiles, which frequently vary in shape. In order to assess the effects of this time-dependent blending on measurements of the interstellar O VI lines, we have undertaken a mini-survey of repeated observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud. These sparse time series, which consist of 2-3 observations separated by intervals ranging from a few days to several months, show that wind variability occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does in other resonance lines. However, in the interstellar O VI λ\lambda1032 region, the O VI λ\lambda1038 wind varies only in \sim30% of the cases. By examining cases exhibiting large amplitude variations, we conclude that stellar-wind variability {\em generally} introduces negligible uncertainty for single interstellar O VI components along Galactic lines of sight, but can result in substantial errors in measurements of broader components or blends of components like those typically observed toward stars in the Large Magellanic Cloud. Due to possible contamination by discrete absorption components in the stellar O VI line, stars with terminal velocities greater than or equal to the doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette

    Time-series photometry of the O4 I(n)fp star zeta Puppis

    Full text link
    We report a time-series analysis of the O4 I(n)fp star zeta Pup, based on optical photometry obtained with the SMEI instrument on the Coriolis satellite, 2003--2006. A single astrophysical signal is found, with P = (1.780938 \pm 0.000093) d and a mean semi-amplitude of (6.9 \pm 0.3) mmag. There is no evidence for persistent coherent signals with semi-amplitudes in excess of ca. 2~mmag on any of the timescales previously reported in the literature. In particular, there is no evidence for a signature of the proposed rotation period, ca. 5.1~days; zeta Pup is therefore probably not an oblique magnetic rotator. The 1.8-day signal varies in amplitude by a factor ca. 2 on timescales of 10--100d (and probably by more on longer timescales), and exhibits modest excursions in phase, but there is no evidence for systematic changes in period over the 1000-d span of our observations. Rotational modulation and stellar-wind variability appear to be unlikely candidates for the underlying mechanism; we suggest that the physical origin of the signal may be pulsation associated with low-l oscillatory convection modes.Comment: MNRAS, in pres

    Amplitude variability in satellite photometry of the non-radially pulsating O9.5V star zeta Oph

    Full text link
    We report a time-series analysis of satellite photometry of the non-radially pulsating Oe star zeta Oph, principally using data from SMEI obtained 2003--2008, but augmented with MOST and WIRE results. Amplitudes of the strongest photometric signals, at 5.18, 2.96, and 2.67/d, each vary independently over the 6-year monitoring period (from ca. 30 to <2 mmag at 5.18/d), on timescales of hundreds of days. Signals at 7.19/d and 5.18/d have persisted (or recurred) for around two decades. Supplementary spectroscopic observations show an H-alpha emission episode in 2006; this coincided with small increases in amplitudes of the three strongest photometric signals.Comment: MNRAS, in pres

    Effects of Metallicity on the Rotation Rates of Massive Stars

    Full text link
    Recent theoretical predictions for low metallicity massive stars predict that these stars should have drastically reduced equatorial winds (mass loss) while on the main sequence, and as such should retain most of their angular momentum. Observations of both the Be/(B+Be) ratio and the blue-to-red supergiant ratio appear to have a metallicity dependence that may be caused by high rotational velocities. We have analyzed 39 archival Hubble Space Telescope Imaging Spectrograph (STIS), high resolution, ultraviolet spectra of O-type stars in the Magellanic Clouds to determine their projected rotational velocities V sin i. Our methodology is based on a previous study of the projected rotational velocities of Galactic O-type stars using International Ultraviolet Explorer (IUE) Short Wavelength Prime (SWP) Camera high dispersion spectra, which resulted in a catalog of V sin i values for 177 O stars. Here we present complementary V sin i values for 21 Large Magellanic Cloud and 22 Small Magellanic Cloud O-type stars based on STIS and IUE UV spectroscopy. The distribution of V sin i values for O type stars in the Magellanic Clouds is compared to that of Galactic O type stars. Despite the theoretical predictions and indirect observational evidence for high rotation, the O type stars in the Magellanic Clouds do not appear to rotate faster than their Galactic counterparts.Comment: accepted by ApJ, to appear 20 December 2004 editio

    FUSE Observations of a Full Orbit of Hercules X-1: Signatures of Disk, Star, and Wind

    Full text link
    We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037 line profiles through eclipse ingress and egress indicate a Keplerian accretion disk spinning prograde with the orbit. These observations may show the first double-peaked accretion disk line profile to be seen in the Hercules X-1 system. Doppler tomograms of the emission lines show a bright spot offset from the Roche lobe of the companion star HZ Her, but no obvious signs of the accretion disk. Simulations show that the bright spot is too far offset from the Roche lobe to result from uneven X-ray heating of its surface. The absence of disk signatures in the tomogram can be reproduced in simulations which include absorption from a stellar wind. We attempt to diagnose the state of the emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The latter may be enhanced through Bowen fluorescence.Comment: Accepted for publication in The Astrophysical Journa

    Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance

    Get PDF
    We have conducted a programme to determine the fundamental parameters of a substantial number of eclipsing binaries of spectral types O and B in the Small Magellanic Cloud. New spectroscopic data, obtained with the two-degree-field multi-object spectrograph on the 3.9-m Anglo-Australian Telescope, have been used in conjunction with photometry from the Optical Gravitational Lens Experiment (OGLE-II) database of SMC eclipsing binaries. Previously we reported results for 10 systems; in this second and concluding paper we present spectral types, masses, radii, temperatures, surface gravities and luminosities for the components of a further 40 binaries. The full sample of 50 OB-type eclipsing systems is the largest single set of fundamental parameters determined for high-mass binaries in any galaxy. We find that 21 of the systems studied are in detached configurations, 28 are in semi-detached post-mass-transfer states, and one is a contact binary. Each system provides a primary distance indicator. We find a mean distance modulus to the SMC of 18.91+/-0.03+/-0.1 (internal and external uncertainties; D=60.6+/-1.0 kpc). This value represents one of the most precise available determinations of the distance to the SMC.Comment: paper accepted on 22 November 2004 for publication by MNRAS; 26 pages, 6 tables, 12 figure

    First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds

    Get PDF
    Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we have carried out spectropolarimetry of five extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We have been able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field has been firmly detected in any of our measurements, but we have been able to estimate upper limits to the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required.Comment: Accepted by A&
    corecore