1,375 research outputs found
Cocaine Preferentially Potentiates Fast Releasable Vesicle Pool in Mouse Dopaminergic Striatum In Vivo
BiophysicsSCI(E)CPCI-S(ISTP)0MEETING ABSTRACT2498A-499A10
Instability, Intermixing and Electronic Structure at the Epitaxial LaAlO3/SrTiO3(001) Heterojunction
The question of stability against diffusional mixing at the prototypical
LaAlO3/SrTiO3(001) interface is explored using a multi-faceted experimental and
theoretical approach. We combine analytical methods with a range of
sensitivities to elemental concentrations and spatial separations to
investigate interfaces grown using on-axis pulsed laser deposition. We also
employ computational modeling based on the density function theory as well as
classical force fields to explore the energetic stability of a wide variety of
intermixed atomic configurations relative to the idealized, atomically abrupt
model. Statistical analysis of the calculated energies for the various
configurations is used to elucidate the relative thermodynamic stability of
intermixed and abrupt configurations. We find that on both experimental and
theoretical fronts, the tendency toward intermixing is very strong. We have
also measured and calculated key electronic properties such as the presence of
electric fields and the value of the valence band discontinuity at the
interface. We find no measurable electric field in either the LaAlO3 or SrTiO3,
and that the valence band offset is near zero, partitioning the band
discontinuity almost entirely to the conduction band edge. Moreover, we find
that it is not possible to account for these electronic properties
theoretically without including extensive intermixing in our physical model of
the interface. The atomic configurations which give the greatest electrostatic
stability are those that eliminate the interface dipole by intermixing, calling
into question the conventional explanation for conductivity at this interface -
electronic reconstruction. Rather, evidence is presented for La indiffusion and
doping of the SrTiO3 below the interface as being the cause of the observed
conductivity
Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media
Interrelationships between pyrogenic polycyclic aromatic hydrocarbons (PAHs) were assessed in air, soil, water, sediment, and tree leaves by using multi-media monitoring data. Concurrent concentration measurements were taken bimonthly for a year for the multi-media at urban and suburban sites. PAH level correlations between air and other media were observed at the urban site but were less clear at the suburban site. Considering a closer PAHs distribution/fate characteristics to soil than suspended solids, contamination in sediment seemed to be governed primarily by that in soil. The partitioning of PAHs in waters could be better accounted for by sorption onto black carbon and dissolved organic carbon
Transcriptional Control in the Segmentation Gene Network of Drosophila
The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a uniform set of criteria, permitting the definition of basic composition rules. The study demonstrates that computational methods are a powerful complement to experimental approaches in the analysis of transcription networks
Factors that could explain the increasing prevalence of type 2 diabetes among adults in a Canadian province: a critical review and analysis
Abstract: Background: The prevalence of diabetes has increased since the last decade in New Brunswick. Identifying factors contributing to the increase in diabetes prevalence will help inform an action plan to manage the condition. The objective was to describe factors that could explain the increasing prevalence of type 2 diabetes in New Brunswick since 2001. Methods: A critical literature review was conducted to identify factors potentially responsible for an increase in prevalence of diabetes. Data from various sources were obtained to draw a repeated cross-sectional (2001–2014) description of these factors concurrently with changes in the prevalence of type 2 diabetes in New Brunswick. Linear regressions, Poisson regressions and Cochran Armitage analysis were used to describe relationships between these factors and time. Results: Factors identified in the review were summarized in five categories: individual-level risk factors, environmental risk factors, evolution of the disease, detection effect and global changes. The prevalence of type 2 diabetes has increased by 120% between 2001 and 2014. The prevalence of obesity, hypertension, prediabetes, alcohol consumption, immigration and urbanization increased during the study period and the consumption of fruits and vegetables decreased which could represent potential factors of the increasing prevalence of type 2 diabetes. Physical activity, smoking, socioeconomic status and education did not present trends that could explain the increasing prevalence of type 2 diabetes. During the study period, the mortality rate and the conversion rate from prediabetes to diabetes decreased and the incidence rate increased. Suggestion of a detection effect was also present as the number of people tested increased while the HbA1c and the age at detection decreased. Period and birth cohort effect were also noted through a rise in the prevalence of type 2 diabetes across all age groups, but greater increases were observed among the younger cohorts. Conclusions: This study presents a comprehensive overview of factors potentially responsible for population level changes in prevalence of type 2 diabetes. Recent increases in type 2 diabetes in New Brunswick may be attributable to a combination of some individual-level and environmental risk factors, the detection effect, the evolution of the disease and global changes
Synaptic Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific Manner Indicating Their Subsynaptic Location
Background:
An increasing number of studies report associations between variation in DTNBP1, a top candidate gene in schizophrenia, and both the clinical symptoms of the disorder and its cognitive deficits. DTNBP1 encodes dysbindin-1, reduced levels of which have been found in synaptic fields of schizophrenia cases. This study determined whether such synaptic reductions are isoform-specific.
Methodology/Principal Findings:
Using Western blotting of tissue fractions, we first determined the synaptic localization of the three major dysbindin-1 isoforms (A, B, and C). All three were concentrated in synaptosomes of multiple brain areas, including auditory association cortices in the posterior half of the superior temporal gyrus (pSTG) and the hippocampal formation (HF). Tests on the subsynaptic tissue fractions revealed that each isoform is predominantly, if not exclusively, associated with synaptic vesicles (dysbindin-1B) or with postsynaptic densities (dysbindin-1A and -1C). Using Western blotting on pSTG (n = 15) and HF (n = 15) synaptosomal fractions from schizophrenia cases and their matched controls, we discovered that synaptic dysbindin-1 is reduced in an isoform-specific manner in schizophrenia without changes in levels of synaptophysin or PSD-95. In pSTG, about 92% of the schizophrenia cases displayed synaptic dysbindin-1A reductions averaging 48% (p = 0.0007) without alterations in other dysbindin-1 isoforms. In the HF, by contrast, schizophrenia cases displayed normal levels of synaptic dysbindin-1A, but 67% showed synaptic reductions in dysbindin-1B averaging 33% (p = 0.0256), while 80% showed synaptic reductions in dysbindin-1C averaging 35% (p = 0.0171).
Conclusions/Significance:
Given the distinctive subsynaptic localization of dysbindin-1A, -1B, and -1C across brain regions, the observed pSTG reductions in dysbindin-1A are postsynaptic and may promote dendritic spine loss with consequent disruption of auditory information processing, while the noted HF reductions in dysbindin-1B and -1C are both presynaptic and postsynaptic and could promote deficits in spatial working memory
The Fecal Viral Flora of Wild Rodents
The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals
The globalization of cultural eutrophication in the coastal ocean: causes and consequences
Coastal eutrophication caused by anthropogenic nutrient inputs is one of the greatest threats to the health of coastal estuarine and marine ecosystems worldwide. Globally, similar to 24% of the anthropogenic N released in coastal watersheds is estimated to reach coastal ecosystems. Seven contrasting coastal ecosystems subject to a range of riverine inputs of freshwater and nutrients are compared to better understand and manage this threat. The following are addressed: (i) impacts of anthropogenic nutrient inputs on ecosystem services; (ii) how ecosystem traits minimize or amplify these impacts; (iii) synergies among pressures (nutrient enrichment, over fishing, coastal development, and climate-driven pressures in particular); and (iv) management of nutrient inputs to coastal ecosystems. This comparative analysis shows that "trophic status," when defined in terms of the level of primary production, is not useful for relating anthropogenic nutrient loading to impacts. Ranked in terms of the impact of cultural eutrophication, Chesapeake Bay ranks number one followed by the Baltic Sea, Northern Adriatic Sea, Northern Gulf of Mexico, Santa Barbara Channel, East China Sea, and the Great Barrier Reef. The impacts of increases in anthropogenic nutrient loading (e.g., development of "dead zones," loss of biologically engineered habitats, and toxic phytoplankton events) are, and will continue to be, exacerbated by synergies with other pressures, including over fishing, coastal development and climate-driven increases in sea surface temperature, acidification and rainfall. With respect to management, reductions in point source inputs from sewage treatment plants are increasingly successful. However, controlling inputs from diffuse sources remains a challenging problem. The conclusion from this analysis is that the severity of coastal eutrophication will likely continue to increase in the absence of effectively enforced, ecosystem-based management of both point and diffuse sources of nitrogen and phosphorus. This requires sustained, integrated research and monitoring, as well as repeated assessments of nutrient loading and impacts. These must be informed and guided by ongoing collaborations among scientists, politicians, managers and the public.info:eu-repo/semantics/publishedVersio
Identification of six new susceptibility loci for invasive epithelial ovarian cancer.
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data
analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research
Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data
generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
- …