178 research outputs found

    Many roads, one destination for T cell progenitors

    Get PDF
    The thymus manufactures new T cells throughout life but contains no self-renewing potential. Instead, replenishment depends on recruitment of bone marrow–derived progenitors that circulate in the blood. Attempts to identify thymic-homing progenitors, and to assess the degree to which they are precommitted to the T cell lineage, have led to complex and sometimes conflicting results. As described here, this probably reflects the existence of multiple distinct types of T cell lineage progenitors as well as differences in individual experimental approaches

    Kinetics of Steady-state Differentiation and Mapping of Intrathymic-signaling Environments by Stem Cell Transplantation in Nonirradiated Mice

    Get PDF
    Upon thymus entry, thymic-homing progenitors undergo distinct phases of differentiation as they migrate through the cortex to the capsule, suggesting that the signals that induce these differentiation steps may be stratified in corresponding cortical regions. To better define these regions, we transplanted purified stem cells into nonirradiated congenic recipients and followed their differentiation with respect to both tissue location and time. The earliest progenitors (DN1) remained confined to a very narrow region of the cortex for about the first 10 d of intrathymic residence; this region virtually overlaps the sites of thymic entry, suggesting that DN1 cells move very little during this lengthy period of proliferation and lineage commitment. Movement out of this region into the deeper cortex is asynchronous, and corresponds to the appearance of DN2 cells. Differentiation to the DN3 stage correlates with movement across the midpoint of the cortex, indicating that stromal signals that induce functions such as TCR gene rearrangement reside mainly in the outer half of the cortex. The minimum time to reach the capsule, and thus transit to the DP stage, is ∌13 d, with the average time a few days longer. These findings reveal for the first time the kinetics of steady-state progenitor differentiation in the thymus, as well as defining the boundaries of cortical regions that support different phases of the differentiation process. We also show that the first lineage-positive progeny of transplanted stem cells to appear in the thymus are dendritic cells in the medulla, suggesting that each new wave of new T cell production is preceded by a wave of regulatory cells that home to the medulla and ensure efficient tolerance and selection

    Characterization of Vascular Adhesion Molecules that may Facilitate Progenitor Homing in the Post-natal Mouse Thymus

    Get PDF
    T cell progenitors derive from the bone marrow but must migrate via bloodstream to the thymus in order to differentiate. The mechanism by which the thymus recruits progenitors from the blood is unknown. It is known, however, that there are receptive and refractory periods for progenitor recruitment and that when cells are imported, they enter the thymus through post-capillary venules. Therefore, recruitment is an active process temporally and spatially regulated. In order to characterize the mechanism of recruitment, we evaluated vascular signals known to regulate leukocyte extravasation, with respect to their intrathymic location and temporal fluctuations. We find that CD34, MECA79, VCAM-1, ICAM-1 and VAP-1 are all expressed in thymic blood vessels. MECA79 and VAP-1 appear to be specific for post-capillary venules, while ICAM-1 and VCAM-1 are also found on intrathymic stromal cells. MAdCAM is also expressed in the thymus, but is not associated with vascular tissues. Only MECA79 is upregulated during recruitment peaks, suggesting a role for this molecule in the periodicity of recruitment. Together, these studies reveal potential roles for l-selectin ligands, VCAM-1, ICAM-1 and VAP-1 in progenitor recruitment to the thymus, and implicate the presence of other periodic signals, such as chemokines and cytokines, that cooperate to execute this essential function

    Maintenance of T Cell Specification and Differentiation Requires Recurrent Notch Receptor–Ligand Interactions

    Get PDF
    Notch signaling has been shown to play a pivotal role in inducing T lineage commitment. However, T cell progenitors are known to retain other lineage potential long after the first point at which Notch signaling is required. Thus, additional requirements for Notch signals and the timing of these events relative to intrathymic differentiation remain unknown. Here, we address this issue by culturing subsets of CD4 CD8 double negative (DN) thymocytes on control stromal cells or stromal cells expressing Delta-like 1 (Dll1). All DN subsets were found to require Notch signals to differentiate into CD4+ CD8+ T cells. Using clonal analyses, we show that CD44+ CD25+ (DN2) cells, which appeared committed to the T cell lineage when cultured on Dll1-expressing stromal cells, nonetheless gave rise to natural killer cells with a progenitor frequency similar to that of CD44+ CD25− (DN1) thymocytes when Notch signaling was absent. These data, together with the observation that Dll1 is expressed on stromal cells throughout the thymic cortex, indicates that Notch receptor–ligand interactions are necessary for induction and maintenance of T cell lineage specification at both the DN1 and DN2 stages of T cell development, suggesting that the Notch-induced repression of the B cell fate is temporally separate from Notch-induced commitment to the T lineage

    Parsnips in ELT: stepping out of the comfort zone (Vol. 2)

    Get PDF
    The PARSNIP is, as many of you will know, a reference to all those topics that are commonly left out of the standard ELT coursebook: Politics, Alcohol, Religion, Sex, Narcotics, -Isms, Pork. And it is easy to understand why these things are not included - in simple terms coursebooks are written for the largest possible market and therefore can only ever concentrate on the safest common denominator in terms of topics. You might be able to get away with a discussion on the differences between democratic governments and dictatorships in Portugal, but the chances are you might find it more difficult in Belarus. So if you want to sell a coursebook in both Portugal and Belarus, you have to make sure that the topics are not going to prove overly contentious or possibly lead to the arrest and deportation of the teacher and closing of the school. The result though, is what Mario Rinvolucri described as ““the soft, fudgey, sub-journalistic, woman’s magaziney world of EFLese course materials” - endless worthy discussions about the environment, the role of technology in life and how to have a healthy lifestyle. The Parsnips in ELT project is an attempt to provide resources and support for teachers who do want to engage their classes in more meaningful topics and discussions. Or at the very least to do something different! It is however, up to you and your own personal and professional judgment whether you choose to use these lesson plans in your context and with your classes, or even if you choose to read them at all! Inevitably, there will be some lessons that you will feel are inappropriate to use and some that you feel will really get the class engaged in the topic and the discussion

    Thymic T Cell Development and Progenitor Localization Depend on CCR7

    Get PDF
    T cell differentiation in the adult thymus depends on sequential interactions between lymphoid progenitors and stromal cells found in distinct regions of the cortex and medulla. Therefore, migration of T cell progenitors through distinct stromal environments seems to be a crucial process regulating differentiation and homeostasis inside the thymus

    Characterization of Vascular Adhesion Molecules that may Facilitate Progenitor Homing in the Post-natal Mouse Thymus

    Get PDF
    T cell progenitors derive from the bone marrow but must migrate via bloodstream to the thymus in order to differentiate. The mechanism by which the thymus recruits progenitors from the blood is unknown. It is known, however, that there are receptive and refractory periods for progenitor recruitment and that when cells are imported, they enter the thymus through post-capillary venules. Therefore, recruitment is an active process temporally and spatially regulated. In order to characterize the mechanism of recruitment, we evaluated vascular signals known to regulate leukocyte extravasation, with respect to their intrathymic location and temporal fluctuations. We find that CD34, MECA79, VCAM-1, ICAM-1 and VAP-1 are all expressed in thymic blood vessels. MECA79 and VAP-1 appear to be specific for post-capillary venules, while ICAM-1 and VCAM-1 are also found on intrathymic stromal cells. MAdCAM is also expressed in the thymus, but is not associated with vascular tissues. Only MECA79 is upregulated during recruitment peaks, suggesting a role for this molecule in the periodicity of recruitment. Together, these studies reveal potential roles for L-selectin ligands, VCAM-1, ICAM-1 and VAP-1 in progenitor recruitment to the thymus, and implicate the presence of other periodic signals, such as chemokines and cytokines, that cooperate to execute this essential function
    • 

    corecore