167 research outputs found

    Intellectuals in the fight for peace

    Get PDF
    https://stars.library.ucf.edu/prism/1486/thumbnail.jp

    Nonengraftment Haploidentical Cellular Therapy for Hematologic Malignancies

    Get PDF
    Much of the therapeutic benefit of allogeneic transplant is by a graft versus tumor effect. Further data shows that transplant engraftment is not dependant on myeloablation, instead relying on quantitative competition between donor and host cells. In the clinical setting, engraftment by competition alone is not feasible due to the need for large numbers of infused cells. Instead, low-level host irradiation has proven to be an effective engraftment strategy that is stem cell toxic but not myeloablative. The above observations served as the foundation for clinical trials utilizing allogeneic matched and haploidentical peripheral blood stem cell infusions with minimal conditioning in patients with refractory malignancies. Although engraftment was transient or not apparent, there were compelling responses in a heavily pretreated patient population that appear to result from the breaking of tumor immune tolerance by the host through the actions of IFNγ, invariant NK T cells, CD8 T cells, NK cells, or antigen presenting cells

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The {\sc Majorana} collaboration is searching for neutrinoless double beta decay using 76^{76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 155015 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of \sim1 count/t-y or lower in the region of the signal. The {\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which \sim30 kg will be enriched to 87% in 76^{76}Ge. The {\sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {\sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc

    Status of the MAJORANA DEMONSTRATOR experiment

    Full text link
    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.Comment: 8 pages, proceeding from VII International Conference on Interconnections between Particle Physics and Cosmology (PPC 2013), submitted to AIP proceeding

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.Comment: Submitted to AIP Conference Proceedings, 19th Particles & Nuclei International Conference (PANIC 2011), Massachusetts Institute of Technology, Cambridge, MA, USA, July 24-29, 2011; 3 pages, 1 figur
    corecore