2 research outputs found

    FedTM: memory and communication efficient federated learning with Tsetlin Machine

    No full text
    Federated Learning has been an exciting development in machine learning, promising collaborative learning without compromising privacy. However, the resource-intensive nature of Deep Neural Networks (DNN) has made it difficult to implement FL on edge devices. In a bold step towards addressing this challenge, we present FedTM, the first FL framework to utilize Tsetlin Machine, a low-complexity machine learning alternative. We proposed a two-step aggregation scheme for combining local parameters at the server which addressed challenges such as data heterogeneity, varying participating client ratio and bit-based aggregation. Compared to conventional Federated Averaging (FedAvg) with Convolutional Neural Networks (CNN), on average, FedTM provides a substantial reduction in communication costs by 30.5× and 36.6× reduction in storage memory footprint. Our results demonstrate that FedTM outperforms BiFL-BiML (SOTA) in every FL setting while providing 1.37 − 7.6× reduction in communication costs and 2.93 − 7.2× reduction in run-time memory on our evaluated datasets, making it a promising solution for edge devices

    Smart Robust Feature Selection (SoFt) for imbalanced and heterogeneous data

    No full text
    Designing a smart and robust predictive model that can deal with imbalanced data and a heterogeneous set of features is paramount to its widespread adoption by practitioners. By smart, we mean the model is either parameter-free or works well with default parameters, avoiding the challenge of parameter tuning. Furthermore, a robust model should consistently achieve high accuracy regardless of any dataset (imbalance, heterogeneous set of features) or domain (such as medical, financial). To this end, a computationally inexpensive and yet robust predictive model named smart robust feature selection (SoFt) is proposed. SoFt involves selecting a learning algorithm and designing a filtering-based feature selection algorithm named multi evaluation criteria and Pareto (MECP). Two state-of-the-art gradient boosting methods (GBMs), CatBoost and H2O GBM, are considered potential candidates for learning algorithms. CatBoost is selected over H2O GBM due to its robustness with both default and tuned parameters. The MECP uses multiple parameter-free feature scores to rank the features. SoFt is validated against CatBoost with a full feature set and wrapper-based CatBoost. SoFt is robust and consistent for imbalanced datasets, i.e., average value and standard deviation of log loss are low across different folds of K-fold cross-validation. Features selected by MECP are also consistent, i.e., features selected by SoFt and wrapper-based CatBoost are consistent across different folds, demonstrating the effectiveness of MECP. For balanced datasets, MECP selects too few features, and hence, the log loss of SoFt is significantly higher than CatBoost with a full feature set
    corecore