622 research outputs found
Active Perception in Adversarial Scenarios using Maximum Entropy Deep Reinforcement Learning
We pose an active perception problem where an autonomous agent actively
interacts with a second agent with potentially adversarial behaviors. Given the
uncertainty in the intent of the other agent, the objective is to collect
further evidence to help discriminate potential threats. The main technical
challenges are the partial observability of the agent intent, the adversary
modeling, and the corresponding uncertainty modeling. Note that an adversary
agent may act to mislead the autonomous agent by using a deceptive strategy
that is learned from past experiences. We propose an approach that combines
belief space planning, generative adversary modeling, and maximum entropy
reinforcement learning to obtain a stochastic belief space policy. By
accounting for various adversarial behaviors in the simulation framework and
minimizing the predictability of the autonomous agent's action, the resulting
policy is more robust to unmodeled adversarial strategies. This improved
robustness is empirically shown against an adversary that adapts to and
exploits the autonomous agent's policy when compared with a standard
Chance-Constraint Partially Observable Markov Decision Process robust approach
Approximate Decentralized Bayesian Inference
This paper presents an approximate method for performing Bayesian inference
in models with conditional independence over a decentralized network of
learning agents. The method first employs variational inference on each
individual learning agent to generate a local approximate posterior, the agents
transmit their local posteriors to other agents in the network, and finally
each agent combines its set of received local posteriors. The key insight in
this work is that, for many Bayesian models, approximate inference schemes
destroy symmetry and dependencies in the model that are crucial to the correct
application of Bayes' rule when combining the local posteriors. The proposed
method addresses this issue by including an additional optimization step in the
combination procedure that accounts for these broken dependencies. Experiments
on synthetic and real data demonstrate that the decentralized method provides
advantages in computational performance and predictive test likelihood over
previous batch and distributed methods.Comment: This paper was presented at UAI 2014. Please use the following BibTeX
citation: @inproceedings{Campbell14_UAI, Author = {Trevor Campbell and
Jonathan P. How}, Title = {Approximate Decentralized Bayesian Inference},
Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}
Truncated Random Measures
Completely random measures (CRMs) and their normalizations are a rich source
of Bayesian nonparametric priors. Examples include the beta, gamma, and
Dirichlet processes. In this paper we detail two major classes of sequential
CRM representations---series representations and superposition
representations---within which we organize both novel and existing sequential
representations that can be used for simulation and posterior inference. These
two classes and their constituent representations subsume existing ones that
have previously been developed in an ad hoc manner for specific processes.
Since a complete infinite-dimensional CRM cannot be used explicitly for
computation, sequential representations are often truncated for tractability.
We provide truncation error analyses for each type of sequential
representation, as well as their normalized versions, thereby generalizing and
improving upon existing truncation error bounds in the literature. We analyze
the computational complexity of the sequential representations, which in
conjunction with our error bounds allows us to directly compare representations
and discuss their relative efficiency. We include numerous applications of our
theoretical results to commonly-used (normalized) CRMs, demonstrating that our
results enable a straightforward representation and analysis of CRMs that has
not previously been available in a Bayesian nonparametric context.Comment: To appear in Bernoulli; 58 pages, 3 figure
Transferable Pedestrian Motion Prediction Models at Intersections
One desirable capability of autonomous cars is to accurately predict the
pedestrian motion near intersections for safe and efficient trajectory
planning. We are interested in developing transfer learning algorithms that can
be trained on the pedestrian trajectories collected at one intersection and yet
still provide accurate predictions of the trajectories at another, previously
unseen intersection. We first discussed the feature selection for transferable
pedestrian motion models in general. Following this discussion, we developed
one transferable pedestrian motion prediction algorithm based on Inverse
Reinforcement Learning (IRL) that infers pedestrian intentions and predicts
future trajectories based on observed trajectory. We evaluated our algorithm on
a dataset collected at two intersections, trained at one intersection and
tested at the other intersection. We used the accuracy of augmented
semi-nonnegative sparse coding (ASNSC), trained and tested at the same
intersection as a baseline. The result shows that the proposed algorithm
improves the baseline accuracy by 40% in the non-transfer task, and 16% in the
transfer task
FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments
High-speed trajectory planning through unknown environments requires
algorithmic techniques that enable fast reaction times while maintaining safety
as new information about the operating environment is obtained. The requirement
of computational tractability typically leads to optimization problems that do
not include the obstacle constraints (collision checks are done on the
solutions) or use a convex decomposition of the free space and then impose an
ad-hoc time allocation scheme for each interval of the trajectory. Moreover,
safety guarantees are usually obtained by having a local planner that plans a
trajectory with a final "stop" condition in the free-known space. However,
these two decisions typically lead to slow and conservative trajectories. We
propose FASTER (Fast and Safe Trajectory Planner) to overcome these issues.
FASTER obtains high-speed trajectories by enabling the local planner to
optimize in both the free-known and unknown spaces. Safety guarantees are
ensured by always having a feasible, safe back-up trajectory in the free-known
space at the start of each replanning step. Furthermore, we present a Mixed
Integer Quadratic Program formulation in which the solver can choose the
trajectory interval allocation, and where a time allocation heuristic is
computed efficiently using the result of the previous replanning iteration.
This proposed algorithm is tested extensively both in simulation and in real
hardware, showing agile flights in unknown cluttered environments with
velocities up to 3.6 m/s.Comment: IROS 201
Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning
Robots that navigate among pedestrians use collision avoidance algorithms to
enable safe and efficient operation. Recent works present deep reinforcement
learning as a framework to model the complex interactions and cooperation.
However, they are implemented using key assumptions about other agents'
behavior that deviate from reality as the number of agents in the environment
increases. This work extends our previous approach to develop an algorithm that
learns collision avoidance among a variety of types of dynamic agents without
assuming they follow any particular behavior rules. This work also introduces a
strategy using LSTM that enables the algorithm to use observations of an
arbitrary number of other agents, instead of previous methods that have a fixed
observation size. The proposed algorithm outperforms our previous approach in
simulation as the number of agents increases, and the algorithm is demonstrated
on a fully autonomous robotic vehicle traveling at human walking speed, without
the use of a 3D Lidar
Efficient Constellation-Based Map-Merging for Semantic SLAM
Data association in SLAM is fundamentally challenging, and handling ambiguity
well is crucial to achieve robust operation in real-world environments. When
ambiguous measurements arise, conservatism often mandates that the measurement
is discarded or a new landmark is initialized rather than risking an incorrect
association. To address the inevitable `duplicate' landmarks that arise, we
present an efficient map-merging framework to detect duplicate constellations
of landmarks, providing a high-confidence loop-closure mechanism well-suited
for object-level SLAM. This approach uses an incrementally-computable
approximation of landmark uncertainty that only depends on local information in
the SLAM graph, avoiding expensive recovery of the full system covariance
matrix. This enables a search based on geometric consistency (GC) (rather than
full joint compatibility (JC)) that inexpensively reduces the search space to a
handful of `best' hypotheses. Furthermore, we reformulate the commonly-used
interpretation tree to allow for more efficient integration of clique-based
pairwise compatibility, accelerating the branch-and-bound max-cardinality
search. Our method is demonstrated to match the performance of full JC methods
at significantly-reduced computational cost, facilitating robust object-based
loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation
(ICRA) 201
Complexity Analysis and Efficient Measurement Selection Primitives for High-Rate Graph SLAM
Sparsity has been widely recognized as crucial for efficient optimization in
graph-based SLAM. Because the sparsity and structure of the SLAM graph reflect
the set of incorporated measurements, many methods for sparsification have been
proposed in hopes of reducing computation. These methods often focus narrowly
on reducing edge count without regard for structure at a global level. Such
structurally-naive techniques can fail to produce significant computational
savings, even after aggressive pruning. In contrast, simple heuristics such as
measurement decimation and keyframing are known empirically to produce
significant computation reductions. To demonstrate why, we propose a
quantitative metric called elimination complexity (EC) that bridges the
existing analytic gap between graph structure and computation. EC quantifies
the complexity of the primary computational bottleneck: the factorization step
of a Gauss-Newton iteration. Using this metric, we show rigorously that
decimation and keyframing impose favorable global structures and therefore
achieve computation reductions on the order of and , respectively,
where is the pruning rate. We additionally present numerical results
showing EC provides a good approximation of computation in both batch and
incremental (iSAM2) optimization and demonstrate that pruning methods promoting
globally-efficient structure outperform those that do not.Comment: Pre-print accepted to ICRA 201
- …