52 research outputs found

    Distinguishing coherent and thermal photon noise in a circuit QED system

    Get PDF
    In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1T_1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra

    High-resolution Infrared Spectrograph for Exoplanet Characterization with the Keck and Thirty Meter Telescopes

    Get PDF
    HISPEC (High-resolution Infrared Spectrograph for Exoplanet Characterization) is a proposed diffraction-limited spectrograph for the W.M. Keck Observatory, and a pathfinder for the MODHIS facility project (Multi-Object Diffraction-limited High-resolution Infrared Spectrograph) on the Thirty Meter Telescope. HISPEC/MODHIS builds on diffraction-limited spectrograph designs which rely on adaptively corrected single-mode fiber feeds. Seeing-limited high-resolution spectrographs, by virtue of the conservation of beam etendue, grow in volume following a D^3 power law (D is the telescope diameter), and are subject to daunting challenges associated with their large size. Diffraction-limited spectrographs fed by single mode fibers are decoupled from the telescope input, and are orders of magnitude more compact and have intrinsically stable line spread functions. Their efficiency is directly proportional to the performance of the adaptive optics (AO) system. AO technologies have matured rapidly over the past two decades and are baselined for future extremely large telescopes. HISPEC/MODHIS will take R>100,000 spectra of a few objects in a 10" field-of-view sampled at the diffraction limit (~10-50 mas), simultaneously from 0.95 to 2.4 microns (y-K). The scientific scope ranges from exoplanet infrared precision radial velocities, spectroscopy of transiting, close-in, and directly imaged exoplanets (atmospheric composition and dynamics, RM effect, spin measurements, Doppler imaging), brown dwarf characterization, stellar physics/chemistry, proto-planetary disk kinematics/composition, Solar system, extragalactic science, and cosmology. HISPEC/MODHIS features a compact, cost-effective design optimized to fully exploit the existing Keck-AO and future TMT-NFIRAOS infrastructures and boost the scientific reach of Keck Observatory and TMT soon after first light

    Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans

    Get PDF
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward

    Coherent Coupled Qubits for Quantum Annealing

    Get PDF
    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we examine an alternative approach using qubits with smaller I[subscript p] and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.United States. Office of the Director of National IntelligenceUnited States. Intelligence Advanced Research Projects ActivityUnited States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (FA8721-05-C-0002

    Thermal and Residual Excited-State Population in a 3D Transmon Qubit

    Get PDF
    Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al., we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35–150 mK. Below 35 mK, the excited-state population saturates at approximately 0.1%. We verified this result using a flux qubit with ten times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff}=35  mK. Assuming T[subscript eff] is due solely to hot quasiparticles, the inferred qubit lifetime is 108  μs and in plausible agreement with the measured 80  μs.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002)United States. Army Research Office (Grant W911NF-14-1-0078)National Science Foundation (U.S.) (Grant PHY-1415514

    Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans

    Get PDF
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward

    The flux qubit revisited to enhance coherence and reproducibility

    Get PDF
    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T₁ across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T₂≈85 μs, approximately the 2T₁ limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T₂ in contemporary qubits based on transverse qubit–resonator interaction
    corecore