38 research outputs found
LESSONS ON OROGRAPHIC PRECIPITATION FROM MAP
Although moisture-laden airflow towards a mountain is a necessary ingredient, the results from MAP taught us that detailed knowledge of the orographically modified flow is crucial for predicting the intensity, location and duration of orographic precipitation. Understanding the orographically modified flow as it occurs in the Alps was difficult since it depends on the static stability of the flow, which is heavily influenced by the complex effects of latent heating, and the mountain shape, which has important and complicated variations on scales ranging from a few to 100\u27s of kilometers. Central themes in all the wet-MAP studies are the ways the complex Alpine orography influenced the moist, stratified airflow to produce the observed precipitation patterns, by determining the location and
rate of upward air motion and triggering fine-scale motions and microphysical processes that locally enhance the growth and fallout of precipitation. In this presentation will review the major findings from the MAP observations, along with related theoretical developments
Characteristics of mesoscale precipitation areas,
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1969.Bibliography: leaf 39.by Robert Alvin Houze, Jr.M.S
Modification of Precipitation by Coastal Orography in Storms Crossing Northern California
This study compiles and interprets three-dimensional Weather Surveillance Radar-1988 Doppler (WSR-88D) data during a 2.5-yr period and examines the typical orographic effects on precipitation mainly associated with winter storms passing over coastal northern California.The three-dimensional mean reflectivity patterns show echo structure that was generally stratiform from over the ocean to inland over the mountains. The flow above the 1-km level was strong enough to be unblocked by the terrain, and the mean echo pattern over land had certain characteristics normally associated with an unblocked cross-barrier flow, both on the broad scale of the windward slopes of the coastal mountains and on the scale of individual peaks of the terrain on the windward side. Upward-sloping echo contours on the scale of the overall region of coastal mountains indicated broadscale upslope orographic enhancement. On a smaller scale, the mean stratiform echo pattern over the mountains contained a strong embedded core of maximum reflectivity over the first major peak of terrain encountered by the unblocked flow and a secondary echo core over the second major rise of the coastal mountain terrain.Offshore, upstream of the coastal mountains, the reflectivity pattern showed a region of enhanced mainly stratiform echo within ∼100 km of the coast, with an embedded echo core, similar to those over the inland mountain peaks, along its leading edge. It is suggested that the offshore enhancement is caused by intensified frontogenesis in the offshore coastal zone and/or by the onshore directed low-level flow rising over a thin layer of cool, stable air dammed against the coastal mountains.The orographically enhanced precipitation offshore and over the coastal mountains was present to some degree in all the landfalling storms. However, the degree to which each feature was present varied. All the features were more pronounced when the 500–700-hPa flow was strong, the midlevel humidity was high, and the low-level cross-barrier wind component was strong. When the low-level stability was greater, the offshore enhancement of precipitation was proportionately increased, and the general broadscale enhancement inland was reduced
Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool
This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1256/qj.04.141/abstract.Momentum transport by the stratiform components of mesoscale convective systems (MCSs) during the Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment in December 1992 is investigated using a cloud-resolving model. The mesoscale momentum transport by the stratiform regions of MCSs is examined in two distinct large-scale flow regimes associated with the intraseasonal oscillation over the western Pacific warm pool. Model simulations for 14 December 1992 characterize the ‘westerly onset’ period, which has relatively weak low-level westerlies with easterlies above. Simulations for 23–24 December represent the ‘strong westerly’ regime, when westerlies extend from the upper troposphere to the surface, with a jet 2–3 km above the surface. In the westerly onset simulation, the extensive stratiform region of a MCS contained a broad region of descent that transported easterly momentum associated with the mid-level easterly jet downward. Thus, the stratiform regions acted as a negative feedback to decrease the large-scale mean westerly momentum developing at low levels. In the strong westerly regime, the mesoscale downward air motion in the stratiform regions of large MCSs transported westerly momentum downward and thus acted as a positive feedback, strengthening the already strong westerly momentum at low levels. Momentum fluxes by the mesoscale stratiform region downdraughts are shown to have a systematic and measurable impact on the large-scale momentum budget. Copyright © 2006 Royal Meteorological Society
Recommended from our members
A stochastic framework for modeling the population dynamics of convective clouds
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the non-equilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations.
Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a non-linear function of convective cell area, then the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of serving as a non-equilibrium closure formulations for spectral mass flux parameterizations
Retrieved Latent Heating from TRMM
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for three-fourths of the total heat energy available to the Earth's atmosphere. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to meso-synoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations in environmental prediction models. The status of retrieved TRMM LH products, TRMM LH inter-comparison and validation project, current TRMM LH applications and critic issues/action items (based on previous five TRMM LH workshops) is presented in this article
Recommended from our members
The dynamic and thermodynamic structure of the monsoon over southern India: new observations from the INCOMPASS IOP
Some of the highest summer monsoon rainfall in South Asia falls on the windward slopes of the Western Ghats mountains on India’s west coast and offshore over the eastern Arabian Sea. Understanding of the processes determining the spatial distribution and temporal variability of this region remains incomplete. In this paper, new Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) aircraft and ground-based measurements of the summer monsoon over the Western Ghats and upstream of them are presented and placed within the context of remote sensing observations and reanalysis. The transition from widespread rainfall over the eastern Arabian Sea to rainfall over the Western Ghats is documented in high spatial and temporal resolution. Heavy rainfall offshore during the campaign was associated primarily with mid-tropospheric humidity, secondarily with sea surface temperature, and only weakly with orographic blocking. A mid-tropospheric dry intrusion suppressed deep convection offshore in the latter half of the campaign, allowing the build-up of low-level humidity in the onshore flow and enhancing rainfall over the mountains. Rainfall on the lee side of the Western Ghats occurred during the latter half of the campaign in association with enhanced mesoscale easterly upslope flow. Diurnal cycles in rainfall offshore (maximum in the morning) and on the mountains (maximum in the afternoon) were observed. Considerable zonal and temporal variability was seen in the offshore boundary layer, suggesting the presence of convective downdrafts and cold pools. Persistent drying of the subcloud mixed layer several hundred kilometres off the coast was observed, suggesting strong mixing between the boundary layer and the free troposphere. These observations provide quantitative targets to test models and suggest hypotheses on the physical mechanisms determining the distribution and variability in rainfall in the Western Ghats region
Recommended from our members
Clouds, circulation and climate sensitivity
Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific
questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks
Cloud dynamics
responses analysis of permeable breakwater subjected to random wave