33 research outputs found

    RNA-seq analysis revealed considerable genetic diversity and enabled the development of specific KASP markers for Psathyrostachys huashanica

    Get PDF
    Psathyrostachys huashanica, which grows exclusively in Huashan, China, is an important wild relative of common wheat that has many desirable traits relevant for wheat breeding. However, the poorly characterized interspecific phylogeny and genomic variations and the relative lack of species-specific molecular markers have limited the utility of P. huashanica as a genetic resource for enhancing wheat germplasm. In this study, we sequenced the P. huashanica transcriptome, resulting in 50,337,570 clean reads that were assembled into 65,617 unigenes, of which 38,428 (58.56%) matched at least one sequence in public databases. The phylogenetic analysis of P. huashanica, Triticeae species, and Poaceae species was conducted using 68 putative orthologous gene clusters. The data revealed the distant evolutionary relationship between P. huashanica and common wheat as well as the substantial diversity between the P. huashanica genome and the wheat D genome. By comparing the transcriptomes of P. huashanica and Chinese Spring, 750,759 candidate SNPs between P. huashanica Ns genes and their common wheat orthologs were identified. Among the 90 SNPs in the exon regions with different functional annotations, 58 (64.4%) were validated as Ns genome-specific SNPs in the common wheat background by KASP genotyping assays. Marker validation analyses indicated that six specific markers can discriminate between P. huashanica and the other wheat-related species. In addition, five markers are unique to P. huashanica, P. juncea, and Leymus species, which carry the Ns genome. The Ns genome-specific markers in a wheat background were also validated regarding their specificity and stability for detecting P. huashanica chromosomes in four wheat–P. huashanica addition lines. Four and eight SNP markers were detected in wheat–P. huashanica 2Ns and 7Ns addition lines, respectively, and one marker was specific to both wheat–P. huashanica 3Ns, 4Ns, and 7Ns addition lines. These markers developed using transcriptome data may be used to elucidate the genetic relationships among Psathyrostachys, Leymus, and other closely-related species. They may also facilitate precise introgressions and the high-throughput monitoring of P. huashanica exogenous chromosomes or segments in future crop breeding programs

    Cadmium Treatment Alters the Expression of Five Genes at the Cda1

    Get PDF
    Westag 97 has larger capacity of Cd accumulation in roots which prevents Cd from translocating into stems and leaves; conversely, AC Hime has smaller capacity of Cd accumulation in roots; more Cd is transported into stems and leaves. The different capacity of Cd in roots between Westag 97 and AC Hime causes the different Cd concentration in seeds. Meanwhile, according to the different expression levels of RSTK, ISCP, and H+-ATPase between Westag 97 and AC Hime, RSTK may be involved in transporting Cd into stems and leaves; H+-ATPase may be correlated to the capacity of Cd accumulation in roots; and Cd caused some changes of fundamental life process which leaded to the different expression patterns of ISCP between Westag 97 and AC Hime

    Cloning and Characterization of TpNRAMP3, a Metal Transporter From Polish Wheat (Triticum polonicum L.)

    Get PDF
    Essential transition metals and non-essential metals often co-exist in arable soils. In plants, some transition metal transporters, such as the natural resistance-associated macrophage proteins (NRAMPs), poorly selectively transport metals with similar chemical properties whether they are essential or non-essential. In this study, a member of the NRAMP transporter family, TpNRAMP3, was identified from dwarf Polish wheat (Triticum polonicum L.). TpNRAMP3 encodes a plasma membrane-localized protein and was highly expressed in leaf blades and roots at the jointing and booting stages, and in the first nodes at the grain filling stage. Expression of TpNRAMP3 increased sensitivity to Cd and Co, but not Zn, and increased the Cd and Co concentrations in yeast. TpNRAMP3 expression in Arabidopsis increased concentrations of Cd, Co, and Mn, but not Fe or Zn, in roots, shoots, and whole plant. However, TpNRAMP3 did not affect translocation of Cd, Co, or Mn from roots to shoots. These results suggest that TpNRAMP3 is a transporter for Cd, Co, and Mn accumulation, but not for Fe or Zn. However, Cd and Co are non-essential toxic metals; selective genetic manipulation of TpNRAMP3 will help breed low Cd- and Co-accumulating cultivars

    CagA-positive Helicobacter pylori may promote and aggravate scrub typhus

    Get PDF
    Helicobacter pylori (H. pylori) infection may alter the host’s resistance to tsutsugamushi disease pathogens through the Th1 immune response, leading to potential synergistic pathogenic effects. A total of 117 scrub typhus cases at Beihai People’s Hospital and affiliated hospitals of Youjiang University for Nationalities and Medical Sciences were studied from January to December 2022, alongside 130 healthy individuals forming the control group. All participants underwent serum H. pylori antibody testing. The prevalence of H. pylori infection was significantly higher among scrub typhus patients (89.7%) compared to healthy individuals (54.6%) (p < 0.05). Moreover, type I H. pylori infection was notably more prevalent in scrub typhus cases (67.5%) compared to healthy individuals (30%) (p < 0.05). Multifactorial analysis demonstrated type I H. pylori infection as an independent risk factor for scrub typhus (adjusted odds ratio: 2.407, 95% confidence interval: 1.249–4.64, p = 0.009). Among scrub typhus patients with multiple organ damage, the prevalence of type I H. pylori infection was significantly higher (50.6%) than type II H. pylori infection (15.4%) (χ2 = 4.735, p = 0.030). These results highlight a higher incidence of H. pylori infection in scrub typhus patients compared to the healthy population. Additionally, type I H. pylori strain emerged as an independent risk factor for scrub typhus development. Moreover, individuals infected with type I H. pylori are more susceptible to multiple organ damage. These findings suggest a potential role of H. pylori carrying the CagA gene in promoting and exacerbating scrub typhus

    FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines

    No full text
    Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ESâ‹…1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer

    Disomic Substitution of 3D Chromosome with Its Homoeologue 3E in Tetraploid <i>Thinopyrum elongatum</i> Enhances Wheat Seedlings Tolerance to Salt Stress

    No full text
    The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background

    Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System

    No full text
    Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress,polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and upregulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via upregulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to wheat plants against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role

    The polish wheat (Triticum polonicum L.) TpSnRK2.10 and TpSnRK2.11 meditate the accumulation and the distribution of cd and Fe in transgenic Arabidopsis plants

    No full text
    Abstract Background The SnRK2s (Plant specific protein kinase) are involved in various biological processes, such as plant defense and environmental challenges. In Arabidopsis, AtSnRK2s regulate the expression of some metal transporters. For example, AtSnRK2.4 plays a role in the regulation of Arabidopsis tolerance to Cd; AtSnRK2.2 and AtSnRK2.3 are involved in Cd uptake and translocation. However, the functions of their homologs, TpSnRK2.10 and TpSnRK2.11 from dwarf Polish wheat are unknown. Results TpSnRK2.11 encodes a cytoplasmic protein. TpSnRK2.10 and TpSnRK2.11 have different expression patterns at different growth stages. Expression of TpSnRK2.10 increased yeast’s sensitivity to Cd; conversely, expression of TpSnRK2.11 enhanced yeast’s tolerance to Cd. Overexpression of TpSnRK2.10 or TpSnRK2.11 did not affect Cd sensitivity in Arabidopsis, but significantly increased Cd accumulation in roots and shoots, and Cd translocation from roots to shoots. While, Fe accumulation was significantly increased in roots but decreased in shoots by overexpression of TpSnRK2.10; opposite results were observed in TpSnRK2.11-overexpressing lines. Subcellular distribution analysis found that overexpression of TpSnRK2.10 and TpSnRK2.11 increased Cd concentration in cell wall and organelle fractions of roots and shoots; meanwhile, they also differentially influenced Fe distribution. Conclusions These results indicated that TpSnRK2.10 and TpSnRK2.11 are involved in the uptakes and the translocations of Cd and Fe, possibly by regulating the expression of AtNRAMP1 and AtHMA4, and other genes involved in the synthesis of phytochelatins or hemicellolosic polysaccharides
    corecore