193 research outputs found
The Perfect Family: Decision Making in Biparental Care
Background
Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other\u27s effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory.
Model Description
We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents\u27 behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family).
Conclusions/Significance
The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents\u27 allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents\u27 allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models
Gender equality and religion:a multi-faith exploration of young adults’ narratives
This paper presents findings from research on young adults in the UK from diverse religious backgrounds. Utilizing questionnaires, interviews, and video diaries it assesses how religious young adults understood and managed the tensions in popular discourse between gender equality as an enshrined value and aspirational narrative, and religion as purportedly instituting gender inequality. We show that, despite varied understandings, and the ambivalence and tension in managing ideal and practice, participants of different religious traditions and genders were committed to gender equality. Thus, they viewed gender-unequal practices within their religious cultures as an aberration from the essence of religion. In this way, they firmly rejected the dominant discourse that religion is inherently antithetical to gender equality
Building Babies - Chapter 16
In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1)
Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg
Pathogen Populations Evolve to Greater Race Complexity in Agricultural Systems – Evidence from Analysis of Rhynchosporium secalis Virulence Data
Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ∼1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r20 = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used
Motor coordination: when two have to act as one
Trying to pass someone walking toward you in a narrow corridor is a familiar example of a two-person motor game that requires coordination. In this study, we investigate coordination in sensorimotor tasks that correspond to classic coordination games with multiple Nash equilibria, such as “choosing sides,” “stag hunt,” “chicken,” and “battle of sexes”. In these tasks, subjects made reaching movements reflecting their continuously evolving “decisions” while they received a continuous payoff in the form of a resistive force counteracting their movements. Successful coordination required two subjects to “choose” the same Nash equilibrium in this force-payoff landscape within a single reach. We found that on the majority of trials coordination was achieved. Compared to the proportion of trials in which miscoordination occurred, successful coordination was characterized by several distinct features: an increased mutual information between the players’ movement endpoints, an increased joint entropy during the movements, and by differences in the timing of the players’ responses. Moreover, we found that the probability of successful coordination depends on the players’ initial distance from the Nash equilibria. Our results suggest that two-person coordination arises naturally in motor interactions and is facilitated by favorable initial positions, stereotypical motor pattern, and differences in response times
Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat
Background and Aims
Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality.
Methods
Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution.
Results
Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar.
Conclusions
Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose
Ghosts of Yellowstone: Multi-Decadal Histories of Wildlife Populations Captured by Bones on a Modern Landscape
Natural accumulations of skeletal material (death assemblages) have the potential to provide historical data on species diversity and population structure for regions lacking decades of wildlife monitoring, thereby contributing valuable baseline data for conservation and management strategies. Previous studies of the ecological and temporal resolutions of death assemblages from terrestrial large-mammal communities, however, have largely focused on broad patterns of community composition in tropical settings. Here, I expand the environmental sampling of large-mammal death assemblages into a temperate biome and explore more demanding assessments of ecological fidelity by testing their capacity to record past population fluctuations of individual species in the well-studied ungulate community of Yellowstone National Park (Yellowstone). Despite dramatic ecological changes following the 1988 wildfires and 1995 wolf re-introduction, the Yellowstone death assemblage is highly faithful to the living community in species richness and community structure. These results agree with studies of tropical death assemblages and establish the broad capability of vertebrate remains to provide high-quality ecological data from disparate ecosystems and biomes. Importantly, the Yellowstone death assemblage also correctly identifies species that changed significantly in abundance over the last 20 to ∼80 years and the directions of those shifts (including local invasions and extinctions). The relative frequency of fresh versus weathered bones for individual species is also consistent with documented trends in living population sizes. Radiocarbon dating verifies the historical source of bones from Equus caballus (horse): a functionally extinct species. Bone surveys are a broadly valuable tool for obtaining population trends and baseline shifts over decadal-to-centennial timescales
Receptor-Mediated Enhancement of Beta Adrenergic Drug Activity by Ascorbate In Vitro and In Vivo
RATIONALE: Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. OBJECTIVES: Extending this work to beta 2 adrenergic systems in vitro and in vivo. METHODS: Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. MEASUREMENTS: Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. MAIN RESULTS: Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3-10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in "asthmatic" sheep. CONCLUSIONS: Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications
Widespread Presence of Human BOULE Homologs among Animals and Conservation of Their Ancient Reproductive Function
Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis
- …