277 research outputs found

    Computational Simulations of a Mach 0.745 Transonic Truss-Braced Wing Design

    Get PDF
    A joint effort between the NASA Ames and Langley Research Centers was undertaken to analyze the Mach 0.745 variant of the Boeing Transonic Truss-Braced Wing (TTBW) Design. Two different flow solvers, LAVA and USM3D, were used to predict the TTBW flight performance. Sensitivity studies related to mesh resolution and numerical schemes were conducted to define best practices for this type of geometry and flow regime. Validation efforts compared the numerical simulation results of various modeling methods against experimental data taken from the NASA Ames 11-foot Unitary Wind Tunnel experimental data. The fidelity of the computational representation of the wind tunnel experiment, such as utilizing a porous wall boundary condition to model the ventilated test section, was varied to examine how different tunnel effects influence CFD predictions. LAVA and USM3D results both show an approximate 0.5 angle of attack shift from experimental lift curve data. This drove an investigation that revealed that the trailing edge of the experimental model was rounded in comparison to the CAD model, due to manufacturing tolerances, which had not been accounted for in the initial simulations of the experiment. Simulating the TTBW with an approximation of this rounded trailing-edge reduces error by approximately 60%. An accurate representation of the tested TTBW geometry, ideally including any wing twists and deflections experienced during the test under various loading conditions, will be necessary for proper validation of the CFD

    Rat Stem-Cell Factor Induces Splenocytes Capable Of Regenerating The Thymus

    Get PDF
    Cytokine regulation of prethymic T-lymphoid progenitor-cell proliferation and/or differentiation has not been well-defined, although much is known of cytokine regulation of hemopoietic stem- and progenitor-cell development. Here we use a recently identified hemopoietic growth factor, stem-cell factor (SCF) (a form of the c-kit ligand), and a transplant model of thymocyte regeneration to assess the effect of SCF on the in vivo generation of prethymic, thymocyte progenitor-cell activity. We show that recombinant rat SCF (rrSCF164 administered to weanling rats selectively induces an increase in thymocyte progenitor activity in the spleens of treated rats as compared to rats treated with vehicle, polyethylene glycol (PEG)-conjugated rat albumin, or recombinant human granulocyte colony-stimulating factor (rhG-CSF). These data demonstrate that administration of SCF in vivo affects extrathymic-origin thymocyte regenerating cells and may influence, directly or indirectly, early prethymic stages of T-cell lymphopoiesis in addition to its known effect on early stages of myelopoiesis and erythropoiesis

    Computational Simulations of a Mach 0.745 Transonic Truss-Braced Wing Design

    Get PDF
    A joint effort between the NASA Ames and Langley Research Centers was undertaken to analyze the Mach 0.745 variant of the Boeing Transonic Truss-Braced Wing (TTBW) Design. Two different flow solvers, LAVA and USM3D, were used to predict the TTBW flight performance. Sensitivity studies related to mesh resolution and numerical schemes were conducted to define best practices for this type of geometry and flow regime. Validation efforts compared the numerical simulation results of various modeling methods against experimental data taken from the NASA Ames 11-foot Unitary Wind Tunnel experimental data. The fidelity of the computational representation of the wind tunnel experiment, such as utilizing a porous wall boundary condition to model the ventilated test section, was varied to examine how different tunnel effects influence CFD predictions. LAVA and USM3D results both show an approximate 0.5o angle of attack shift from experimental lift curve data. This drove an investigation that revealed that the trailing edge of the experimental model was rounded in comparison to the CAD model, due to manufacturing tolerances, which had not been accounted for in the initial simulations of the experiment. Simulating the TTBW with an approximation of this rounded trailing-edge reduces error by approximately 60%. An accurate representation of the tested TTBW geometry, ideally including any wing twists and deflections experienced during the test under various loading conditions, will be necessary for more thorough validation of the CFD

    Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor

    Get PDF
    We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 rnRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19//GF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS

    Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym

    Get PDF
    Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807

    Rapid haplotype inference for nuclear families

    Get PDF
    Hapi is a new dynamic programming algorithm that ignores uninformative states and state transitions in order to efficiently compute minimum-recombinant and maximum likelihood haplotypes. When applied to a dataset containing 103 families, Hapi performs 3.8 and 320 times faster than state-of-the-art algorithms. Because Hapi infers both minimum-recombinant and maximum likelihood haplotypes and applies to related individuals, the haplotypes it infers are highly accurate over extended genomic distances.National Institutes of Health (U.S.) (NIH grant 5-T90-DK070069)National Institutes of Health (U.S.) (Grant 5-P01-NS055923)National Science Foundation (U.S.) (Graduate Research Fellowship

    Systematic Identification of Combinatorial Drivers and Targets in Cancer Cell Lines

    Get PDF
    There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance

    Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop

    Get PDF
    A summary is provided for the Second AIAA Sonic Boom Workshop held 8-9 January 2017 in conjunction with AIAA SciTech 2017. The workshop used three required models of increasing complexity: an axisymmetric body, a wing body, and a complete configuration with flow-through nacelle. An optional complete configuration with propulsion boundary conditions is also provided. These models are designed with similar nearfield signatures to isolate geometry and shock/expansion interaction effects. Eleven international participant groups submitted nearfield signatures with forces, pitching moment, and iterative convergence norms. Statistics and grid convergence of these nearfield signatures are presented. These submissions are propagated to the ground, and noise levels are computed. This allows the grid convergence and the statistical distribution of a noise level to be computed. While progress is documented since the first workshop, improvement to the analysis methods for a possible subsequent workshop are provided. The complete configuration with flow-through nacelle showed the most dramatic improvement between the two workshops. The current workshop cases are more relevant to vehicles with lower loudness and have the potential for lower annoyance than the first workshop cases. The models for this workshop with quieter ground noise levels than the first workshop exposed weaknesses in analysis, particularly in convective discretization

    Merkel cell carcinoma of skin-current controversies and recommendations

    Get PDF
    The review covers the current recommendations for Merkel cell carcinoma (MCC), with detailed discussion of many controversies. The 2010 AJCC staging system is more in-line with other skin malignancies although more complicated to use. The changes in staging system over time make comparison of studies difficult. A wide excision with margins of 2.5–3 cm is generally recommended. Even for primary </= 1 cm, there is a significant risk of nodal and distant metastases and hence sentinel node biopsy should be done if possible; otherwise adjuvant radiotherapy to the primary and nodal region should be given. Difficulties of setting up trials owing to the rarity of the disease and the mean age of the patient population result in infrequent reports of adjuvant or concurrent chemotherapy in the literature. The benefit, if any, is not great from published studies so far. However, there may be a subgroup of patients with high-risk features, e.g. node-positive and excellent performance status, for whom adjuvant or concurrent chemotherapy may be considered. Since local recurrence and metastases generally occur within 2 years of the initial diagnosis, patients should be followed more frequently in the first 2 years. However delayed recurrence can still occur in a small proportion of patients and long-term follow-up by a specialist is recommended provided that the general condition of the patient allows it. In summary, physician judgment in individual cases of MCC is advisable, to balance the risk of recurrence versus the complications of treatment
    • …
    corecore