7 research outputs found
A Brief History of Flax Breeding in Canada
Non-Peer ReviewedFrom the Mediterranean to the Canadian prairies, flax has been, and continues to be, an important crop. Divergent selection has resulted in fibre flax and oilseed flax (linseed), each with their own important uses. In Canada, it is linseed that is of economic importance. Canadian varieties are grown for the oil that is produced in their seeds, which has uses in the industrial, human food, and animal food sectors. Though there were once a number of flax breeding programs across the country, there now remains only one. The flax breeding program at the University of Saskatchewan, having survived a tumultuous chapter after the identification of genetically modified flax threatened the Canadian flax industry, remains strong. The program continues to breed flax with improvement to yields, oil profile, disease resistance, and other traits of agronomic importance. More recently, additional emphasis has been placed improving traits of interest to end-users and addressing a variety of environmental crop stresses. Join us for a look at the struggles, successes, and recent advances of flax breeding in Canada. Link to Video Presentation: https://youtu.be/GBGtTBHJp7
Comparative Analysis of Cadmium Uptake and Distribution in Flax
Non-Peer ReviewedHumans consume low quantities of cadmium (Cd), a non-nutritive and potentially toxic heavy metal, primarily via the dietary intake of grains. As part of a larger study designed to assist in the breeding of low Cd-accumulating flax varieties, we have conducted an experiment to determine physiological and developmental differences in Cd content in four flax cultivars (AC Emerson, Flanders, CDC Bethune, and AC McDuff). Our objective was to identify varietal differences in the uptake and distribution of Cd in various tissues among flax cultivars grown in naturally Cd-containing soil in a controlled environment. Cadmium concentration was dependent on the flax variety, developmental stage, and tissue type, as well as their interaction and our results suggest varietal differences in the mechanisms that determine Cd content in seeds. The results of this project, combined with those from genomics and field experiments, will support and accelerate the breeding of adapted flax varieties with low levels of Cd in the seed. Link to Video Presentation: https://youtu.be/0B49NbXL8g
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern
Recent studies indicate that thiamethoxam (TMX), a neonicotinoid insecticide, can affect plant responses to environmental stressors, such as neighboring weeds. The molecular mechanisms behind both stable and environmentally-specific responses to TMX likely involve genes related to defense/stress responses. We investigated the effect of a TMX seed treatment on global gene expression in maize coleoptiles both under normal conditions and under low red to far-red (R/FR) light stress induced by the presence of neighboring plants. The neighboring plant treatment upregulated genes involved in biotic and abiotic stress responses and also affected specific photosynthesis and cell-growth related genes. Low R:FR light may enhance maize resistance to herbivores and pathogens. TMX appears to compromise resistance. The TMX treatment stably repressed many genes that encode proteins involved in biotic stress responses, as well as cell-growth genes. Notably, TMX effects on many genes’ expression were conditional on the environment. In response to low R:FR, plants treated with TMX engage genes in the JA, and other stress-related, response pathways. Neighboring weeds may condition TMX treated plants to become more stress tolerant.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Table_5_Freezing stress response of wild and cultivated chickpeas.xlsx
Chickpea is an economically and nutritionally important grain legume globally, however, cold stress has adverse effects on its growth. In cold countries, like Canada where the growing season is short, having cold stress-tolerant varieties is crucial. Crop wild relatives of chickpea, especially Cicer reticulatum, can survive in suboptimal environments and are an important resource for crop improvement. In this study, we explored the performance of eleven C. reticulatum wild accessions and two chickpea cultivars, CDC Leader and CDC Consul, together with a cold sensitive check ILC533 under freezing stress. Freezing tolerance was scored based on a 1-9 scale. The wild relatives, particularly Kesen_075 and CudiA_152, had higher frost tolerance compared to the cultivars, which all died after frost treatment. We completed transcriptome analysis via mRNA sequencing to assess changes in gene expression in response to freezing stress and identified 6,184 differentially expressed genes (DEGs) in CDC Consul, and 7,842 DEGs in Kesen_075. GO (gene ontology) analysis of the DEGs revealed that those related to stress responses, endogenous and external stimuli responses, secondary metabolite processes, and photosynthesis were significantly over-represented in CDC Consul, while genes related to endogenous stimulus responses and photosynthesis were significantly over-represented in Kesen_075. These results are consistent with Kesen_075 being more tolerant to freezing stress than CDC Consul. Moreover, our data revealed that the expression of CBF pathway-related genes was impacted during freezing conditions in Kesen_075, and expression of these genes is believed to alleviate the damage caused by freezing stress. We identified genomic regions associated with tolerance to freezing stress in an F2 population derived from a cross between CDC Consul and Kesen_075 using QTL-seq analysis. Eight QTLs (P<0.05) on chromosomes Ca3, Ca4, Ca6, Ca7, Ca8, and two QTLs (P<0.01) on chromosomes Ca4 and Ca8, were associated with tolerance to freezing stress. Interestingly, 58 DEGs co-located within these QTLs. To our knowledge, this is the first study to explore the transcriptome and QTLs associated with freezing tolerance in wild relatives of chickpea under controlled conditions. Altogether, these findings provide comprehensive information that aids in understanding the molecular mechanism of chickpea adaptation to freezing stress and further provides functional candidate genes that can assist in breeding of freezing-stress tolerant varieties.</p
Table_4_Freezing stress response of wild and cultivated chickpeas.xlsx
Chickpea is an economically and nutritionally important grain legume globally, however, cold stress has adverse effects on its growth. In cold countries, like Canada where the growing season is short, having cold stress-tolerant varieties is crucial. Crop wild relatives of chickpea, especially Cicer reticulatum, can survive in suboptimal environments and are an important resource for crop improvement. In this study, we explored the performance of eleven C. reticulatum wild accessions and two chickpea cultivars, CDC Leader and CDC Consul, together with a cold sensitive check ILC533 under freezing stress. Freezing tolerance was scored based on a 1-9 scale. The wild relatives, particularly Kesen_075 and CudiA_152, had higher frost tolerance compared to the cultivars, which all died after frost treatment. We completed transcriptome analysis via mRNA sequencing to assess changes in gene expression in response to freezing stress and identified 6,184 differentially expressed genes (DEGs) in CDC Consul, and 7,842 DEGs in Kesen_075. GO (gene ontology) analysis of the DEGs revealed that those related to stress responses, endogenous and external stimuli responses, secondary metabolite processes, and photosynthesis were significantly over-represented in CDC Consul, while genes related to endogenous stimulus responses and photosynthesis were significantly over-represented in Kesen_075. These results are consistent with Kesen_075 being more tolerant to freezing stress than CDC Consul. Moreover, our data revealed that the expression of CBF pathway-related genes was impacted during freezing conditions in Kesen_075, and expression of these genes is believed to alleviate the damage caused by freezing stress. We identified genomic regions associated with tolerance to freezing stress in an F2 population derived from a cross between CDC Consul and Kesen_075 using QTL-seq analysis. Eight QTLs (P<0.05) on chromosomes Ca3, Ca4, Ca6, Ca7, Ca8, and two QTLs (P<0.01) on chromosomes Ca4 and Ca8, were associated with tolerance to freezing stress. Interestingly, 58 DEGs co-located within these QTLs. To our knowledge, this is the first study to explore the transcriptome and QTLs associated with freezing tolerance in wild relatives of chickpea under controlled conditions. Altogether, these findings provide comprehensive information that aids in understanding the molecular mechanism of chickpea adaptation to freezing stress and further provides functional candidate genes that can assist in breeding of freezing-stress tolerant varieties.</p
Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies
Flare frequency distributions represent a key approach to addressing one of
the largest problems in solar and stellar physics: determining the mechanism
that counter-intuitively heats coronae to temperatures that are orders of
magnitude hotter than the corresponding photospheres. It is widely accepted
that the magnetic field is responsible for the heating, but there are two
competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To
date, neither can be directly observed. Nanoflares are, by definition,
extremely small, but their aggregate energy release could represent a
substantial heating mechanism, presuming they are sufficiently abundant. One
way to test this presumption is via the flare frequency distribution, which
describes how often flares of various energies occur. If the slope of the power
law fitting the flare frequency distribution is above a critical threshold,
as established in prior literature, then there should be a
sufficient abundance of nanoflares to explain coronal heating. We performed
600 case studies of solar flares, made possible by an unprecedented number
of data analysts via three semesters of an undergraduate physics laboratory
course. This allowed us to include two crucial, but nontrivial, analysis
methods: pre-flare baseline subtraction and computation of the flare energy,
which requires determining flare start and stop times. We aggregated the
results of these analyses into a statistical study to determine that . This is below the critical threshold, suggesting that Alfv\'en
waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The
Astrophysical Journal on 2023-05-09, volume 948, page 7