19 research outputs found

    Lateral Transfer of a Lectin-Like Antifreeze Protein Gene in Fishes

    Get PDF
    Fishes living in icy seawater are usually protected from freezing by endogenous antifreeze proteins (AFPs) that bind to ice crystals and stop them from growing. The scattered distribution of five highly diverse AFP types across phylogenetically disparate fish species is puzzling. The appearance of radically different AFPs in closely related species has been attributed to the rapid, independent evolution of these proteins in response to natural selection caused by sea level glaciations within the last 20 million years. In at least one instance the same type of simple repetitive AFP has independently originated in two distant species by convergent evolution. But, the isolated occurrence of three very similar type II AFPs in three distantly related species (herring, smelt and sea raven) cannot be explained by this mechanism. These globular, lectin-like AFPs have a unique disulfide-bonding pattern, and share up to 85% identity in their amino acid sequences, with regions of even higher identity in their genes. A thorough search of current databases failed to find a homolog in any other species with greater than 40% amino acid sequence identity. Consistent with this result, genomic Southern blots showed the lectin-like AFP gene was absent from all other fish species tested. The remarkable conservation of both intron and exon sequences, the lack of correlation between evolutionary distance and mutation rate, and the pattern of silent vs non-silent codon changes make it unlikely that the gene for this AFP pre-existed but was lost from most branches of the teleost radiation. We propose instead that lateral gene transfer has resulted in the occurrence of the type II AFPs in herring, smelt and sea raven and allowed these species to survive in an otherwise lethal niche

    Studies on the curing behaviour and mechanical properties of styrene/methyl methacrylate grafted deproteinized natural rubber latex

    No full text
    The graft copolymerization of styrene/methyl methacrylate (MMA) onto deproteinized natural rubber (DPNR) latex was carried out using ammonium peroxy disulfate (N2H8O8S2) as the initiator. The presence of the grafted polystyrene (PS) and polymethyl methacrylate (PMMA) on the rubber backbone was confirmed by FTIR spectroscopy. The effects of monomer concentrations on curing characteristics and mechanical properties were studied. It was found that the cure time and scorch time were increased with increasing monomer concentration whereas the torque max-min value was slightly decreased. It was also noted that the increase in the monomer concentration resulted in stiffer rubber with increased modulus and reduced elongation at break
    corecore