4 research outputs found

    First Long-Time Airborne Fungal Spores Study in Dublin, Ireland (1978–1980)

    Get PDF
    Ambient fungal spores within the atmosphere can contribute to a range of negative human, animal and plant health conditions and diseases. However, trends in fungal spore seasonality, species prevalence, and geographical origin have been significantly understudied in Ireland. Previously unpublished data from the late 1970s have recently been collected and analysed to establish historical fungal spore trends/characteristics for Dublin. Historical spore concentrations were largely dominated by Alternaria, Ascospores, Basidiospores, Botrytis, Cladosporium, Erysiphe and Rusts. The main fungal spore season for Dublin commenced in April with the fructification of Scopulariopsis and Ganoderma. However, the vast majority of other spore types did not reach peak spore release until late summer. The correlation between ambient spore concentration, and meteorological parameters was examined using Multivariable Regression Tree (MRT) analysis. The notable correlations found for fungal spore concentrations tended to involve temperature-based parameters. The use of a non-parametric wind regression was also employed to determine the potential geographical origin of ambient fungal spores. The impact of wind direction, and high windspeed on fungal spores was established, ultimately highlighting the importance of studying and monitoring fungal spores within Ireland, rather than attempting to rely on data from other regions, as most fungal spores collected in Dublin appeared to originate from within the island

    Airborne Fungal Spore Review, New Advances and Automatisation

    Get PDF
    Fungal spores make up a significant portion of Primary Biological Aerosol Particles (PBAPs) with large quantities of such particles noted in the air. Fungal particles are of interest because of their potential to affect the health of both plants and humans. They are omnipresent in the atmosphere year-round, with concentrations varying due to meteorological parameters and location. Equally, differences between indoor and outdoor fungal spore concentrations and dispersal play an important role in occupational health. This review attempts to summarise the different spore sampling methods, identify the most important spore types in terms of negative effects on crops and the public, the factors affecting their growth/dispersal, and different methods of predicting fungal spore concentrations currently in use

    Recent developments in monitoring and modelling airborne pollen, a review

    Get PDF
    Public awareness of the rising importance of allergies and other respiratory diseases has led to increased scientific effort to accurately and rapidly monitor and predict pollen, fungal spores and other bioaerosols in our atmosphere. An important driving force for the increased social and scientific concern is the realisation that climate change will increasingly have an impact on worldwide bioaerosol distributions and subsequent human health. In this review we examine new developments in monitoring of atmospheric pollen as well as observation and source-orientated modelling techniques. The results of a Scopus® search for scientific publications conducted with the terms ‘Pollen allergy’ and ‘Pollen forecast’ included in the title, abstract or keywords show that the number of such articles published has increased year on year. The 12 most important allergenic pollen taxa in Europe as defined by COST Action ES0603 were ranked in terms of the most ‘popular’ for model-based forecasting and for forecasting method used. Betula, Poaceae and Ambrosia are the most forecast taxa. Traditional regression and phenological models (including temperature sum and chilling models) are the most used modelling methods, but it is notable that there are a large number of new modelling techniques being explored. In particular, it appears that Machine Learning techniques have become more popular and led to better results than more traditional observation-orientated models such as regression and time-series analyses

    Airborne Fungal Spore Review, New Advances and Automatisation

    No full text
    Fungal spores make up a significant portion of Primary Biological Aerosol Particles (PBAPs) with large quantities of such particles noted in the air. Fungal particles are of interest because of their potential to affect the health of both plants and humans. They are omnipresent in the atmosphere year-round, with concentrations varying due to meteorological parameters and location. Equally, differences between indoor and outdoor fungal spore concentrations and dispersal play an important role in occupational health. This review attempts to summarise the different spore sampling methods, identify the most important spore types in terms of negative effects on crops and the public, the factors affecting their growth/dispersal, and different methods of predicting fungal spore concentrations currently in use
    corecore