3 research outputs found

    Cost and quality of operational larviciding using drones and smartphone technology

    Get PDF
    Background: Larval Source Management (LSM) is an important tool for malaria vector control and is recommended by WHO as a supplementary vector control measure. LSM has contributed in many successful attempts to eliminate the disease across the Globe. However, this approach is typically labour-intensive, largely due to the difficulties in locating and mapping potential malarial mosquito breeding sites. Previous studies have demonstrated the potential for drone imaging technology to map malaria vector breeding sites. However, key questions remain unanswered related to the use and cost of this technology within operational vector control. Methods: Using Zanzibar (United Republic of Tanzania) as a demonstration site, a protocol was collaboratively designed that employs drones and smartphones for supporting operational LSM, termed the Spatial Intelligence System (SIS). SIS was evaluated over a four-month LSM programme by comparing key mapping accuracy indicators and relative costs (both mapping costs and intervention costs) against conventional ground-based methods. Additionally, malaria case incidence was compared between the SIS and conventional study areas, including an estimation of the incremental cost-effectiveness of switching from conventional to SIS larviciding. Results: The results demonstrate that the SIS approach is significantly more accurate than a conventional approach for mapping potential breeding sites: mean % correct per site: SIS = 60% (95% CI 32–88%, p = 0.02), conventional = 18% (95% CI − 3–39%). Whilst SIS cost more in the start-up phase, overall annualized costs were similar to the conventional approach, with a simulated cost per person protected per year of 3.69(3.69 (0.32 to 15.12)forconventionaland15.12) for conventional and 3.94 (0.342to0.342 to 16.27) for SIS larviciding. The main economic benefits were reduced labour costs associated with SIS in the pre-intervention baseline mapping of habitats. There was no difference in malaria case incidence between the three arms. Cost effectiveness analysis showed that SIS is likely to provide similar health benefits at similar costs compared to the conventional arm. Conclusions: The use of drones and smartphones provides an improved means of mapping breeding sites for use in operational LSM. Furthermore, deploying this technology does not appear to be more costly than a conventional ground-based approach and, as such, may represent an important tool for Malaria Control Programmes that plan to implement LSM

    Evaluation of the Parasight Platform for Malaria Diagnosis

    Get PDF
    The World Health Organization estimates that nearly 500 million malaria tests are performed annually. While microscopy and rapid diagnostic tests (RDTs) are the main diagnostic approaches, no single method is inexpensive, rapid, and highly accurate. Two recent studies from our group have demonstrated a prototype computer vision platform that meets those needs. Here we present the results from two clinical studies on the commercially available version of this technology, the Sight Diagnostics Parasight platform, which provides malaria diagnosis, species identification, and parasite quantification. We conducted a multisite trial in Chennai, India (Apollo Hospital [n = 205]), and Nairobi, Kenya (Aga Khan University Hospital [n = 263]), in which we compared the device to microscopy, RDTs, and PCR. For identification of malaria, the device performed similarly well in both contexts (sensitivity of 99% and specificity of 100% at the Indian site and sensitivity of 99.3% and specificity of 98.9% at the Kenyan site, compared to PCR). For species identification, the device correctly identified 100% of samples with Plasmodium vivax and 100% of samples with Plasmodium falciparum in India and 100% of samples with P. vivax and 96.1% of samples with P. falciparum in Kenya, compared to PCR. Lastly, comparisons of the device parasite counts with those of trained microscopists produced average Pearson correlation coefficients of 0.84 at the Indian site and 0.85 at the Kenyan site
    corecore