25 research outputs found

    Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys

    Get PDF
    In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables

    The effect of dehydroepiandrosterone on coronary blood flow in prepubertal anaesthetized pigs

    No full text
    Extensive research suspecting an association between plasma levels of dehydroepiandrosterone and the risk of coronary heart disease has not been conclusive. The present study was designed to investigate the effect of dehydroepiandrosterone on the coronary circulation and to determine the mechanisms involved. In prepubertal pigs of both sexes anaesthetized with sodium pentobarbitone, changes in left circumflex or anterior descending coronary flow caused by intravenous infusion of dehydroepiandrosterone were assessed using an electromagnetic flowmeter. Changes in heart rate and arterial pressure were prevented by atrial pacing and by connecting the arterial system to a pressurized reservoir containing Ringer solution. In 20 pigs, infusion of 1 mg h−1 of dehydroepiandrosterone caused a decrease in coronary flow without affecting left ventricular dP/dtmax (rate of change of left ventricular systolic pressure) and filling pressures of the heart. In a further eight pigs, a dose–response curve was obtained by graded increases in the infused dose of hormone between 0.03 and 4 mg h−1. The mechanisms of the above response were studied in the 20 pigs by repeating the experiment after haemodynamic variables had returned to the control values observed before infusion. Blockade of muscarinic cholinoceptors with intravenous atropine (five pigs) and of α-adrenoceptors with intravenous phentolamine (five pigs) did not affect the dehydroepiandrosterone-induced coronary vasoconstriction. This response was abolished by blockade of β-adrenoceptors with intravenous propranolol (five pigs) and of coronary nitric oxide synthase with intracoronary injection of Nω-nitro-l-arginine methyl ester (five pigs) even after reversing the increase in arterial pressure and coronary vascular resistance caused by the two blocking agents with intravenous infusion of papaverine. The present study showed that intravenous infusion of dehydroepiandrosterone primarily caused coronary vasoconstriction. The mechanisms of this response were shown to involve the inhibition of a vasodilatory β-adrenergic receptor-mediated effect related to the release of nitric oxide

    Diagnosis of diabetes insipidus observed in Swiss Duroc boars

    Get PDF
    Background Diabetes insipidus (DI) is a rare disease in humans and animals, which is caused by the lack of production, malfunction or dysfunction of the distal nephron to the antidiuretic effect of the antidiuretic hormone (ADH). Diagnosis requires a thorough medical history, clinical examination and further laboratory confirmation. This case report describes the appearance of DI in five Duroc boars in Switzerland. Case presentation Two purebred intact Duroc boars at the age of 8 months and 1.5 years, respectively, with a history of polyuric and polydipsic symptoms had been referred to the Swine Clinic in Berne. Based on the case history, the results of clinical examination and the analysis of blood and urine, a tentative diagnosis of DI was concluded. Finally, the diagnosis was confirmed by findings from a modified water deprivation test, macroscopic examinations and histopathology. Following the diagnosis, three genes known to be involved in inherited DI in humans were analyzed in order to explore a possible genetic background of the affected boars. Conclusion The etiology of DI in pigs is supposed to be the same as in humans, although this disease has never been described in pigs before. Thus, although occurring only on rare occasions, DI should be considered as a differential diagnosis in pigs with polyuria and polydipsia. It seems that a modified water deprivation test may be a helpful tool for confirming a diagnosis in pigs. Since hereditary forms of DI have been described in humans, the occurrence of DI in pigs should be considered in breeding programs although we were not able to identify a disease associated mutation
    corecore