17 research outputs found

    The interaction of carbon nanotubes with an invitro blood-brain barrier model and mouse brain in vivo

    Get PDF
    Under a Creative Commons license.-- et al.Carbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3+) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3+ crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3+ were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3+ within the astrocytes. MWNT-NH3+ that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1 ± 0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration.KAJ acknowledges funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Worldwide Cancer Research (12-1054). KAJ, EP and BB acknowledge the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). HK was sponsored by the Atomic Energy Commission of Syria. EP is enrolled in the UAB PhD program. KAJ thanks the members of the EU COST actions TD1004 (Theranostics Imaging and Therapy: An Action to Develop Novel Nanosized Systems for Imaging-Guided Drug Delivery and Biological Processes) for sponsoring HK's research stay at the ICN2 for the electron microscopy studies. ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). Open Access funded by Biotechnology and Biological Sciences Research CouncilPeer Reviewe

    Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents

    Get PDF
    Carbon nanotubes (CNTs) have been proposed as one of the most promising nanomaterials to be used in biomedicine for their applications in drug/gene delivery as well as biomedical imaging. The present study developed radio-labeled iron oxide decorated multi-walled CNTs (MWNT) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) imaging agents. Hybrids containing different amounts of iron oxide were synthesized by in situ generation. Physicochemical characterisations revealed the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations (FFT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) assured the conformation of prepared SPION as γ-Fe(2)O(3). High r(2) relaxivities were obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem(®). The hybrids were successfully radio-labeled with technetium-99m through a functionalized bisphosphonate and enabled SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality was found by histological examination and the presence of SPION and MWNT were identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues showed the co-localization of SPION and MWNT within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrated the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use

    Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses.

    Get PDF
    Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made.journal articleresearch support, non-u.s. gov't2016 Feb 282015 12 30importe

    The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo

    Get PDF
    AbstractCarbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3+) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3+ crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3+ were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3+ within the astrocytes. MWNT-NH3+ that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1  ±  0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration

    Synthesis of double-clickable functionalised graphene oxide for biological applications

    Get PDF
    Azide- and alkyne-double functionalised graphene oxide (Click(2) GO) was synthesised and characterised with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and Raman spectroscopy. Fourteen-percentage increase in azide content was found, after pre-treatment of GO with meta-chloroperoxybenzoic acid (mCPBA), determined with elemental analysis. No effect on A549 cell viability was found, up to 100 μg mL(–1) and 72 h of incubation, determined with the modified lactate dehydrogenase (mLDH) assay. Two sequential copper(i) catalysed azide–alkyne cycloaddition (CuAAC) reactions were performed to conjugate the propargyl-modified blood–brain barrier targeting peptide Angiopep-2, and a bis-azide polyethylene glycol (M (W) = 3500), to the Click(2) GO. The final conjugate was characterised with ATR-FTIR and TGA

    Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo

    Get PDF
    AbstractBrain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood–brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo. Angiopep-2 (ANG), a ligand for the low-density lipoprotein receptor-related protein-1 (LRP1), has also shown promising results as a targeting ligand for brain delivery using nanoparticles (NPs). Here, we investigate the ability of ANG-targeted chemically-functionalised multi-walled carbon nanotubes (f-MWNTs) to cross the BBB in vitro and in vivo. ANG was conjugated to wide and thin f-MWNTs creating w-MWNT-ANG and t-MWNT-ANG, respectively. All f-MWNTs were radiolabelled to facilitate quantitative analyses by γ-scintigraphy. ANG conjugation to f-MWNTs enhanced BBB transport of w- and t-MWNTs-ANG compared to their non-targeted equivalents using an in vitro co-cultured BBB model consisting of primary porcine brain endothelial cells (PBEC) and primary rat astrocytes. Additionally, following intravenous administration w-MWNTs-ANG showed significantly higher whole brain uptake than the non-targeted w-MWNT in vivo reaching ~2% injected dose per g of brain (%ID/g) within the first hour post-injection. Furthermore, using a syngeneic glioma model, w-MWNT-ANG showed enhanced uptake in glioma brain compared to normal brain at 24h post-injection. t-MWNTs-ANG, on the other hand, showed higher brain accumulation than w-MWNTs. However, no significant differences were observed between t-MWNT and t-MWNT-ANG indicating the importance of f-MWNTs diameter towards their brain accumulation. The inherent brain accumulation ability of f-MWNTs coupled with improved brain-targeting by ANG favours the future clinical applications of f-MWNT-ANG to deliver active therapeutics for brain glioma therapy

    Reiselivsbedrifters endringskapasitet - i lys av klimaendringer

    No full text
    Sammendrag I denne oppgaven har vi undersøkt endringskapasiteten til ulike typer reiselivsbedrifter i Sogn og Fjordane. Studien tar videre for seg om bedriftene opplever klimatiske endringer som en ekstern drivkraft, og hvorvidt de har motivasjon og tro på en effektiv omstilling i forhold til klimaendringer. Teorikapittelet presenterer endringslitteratur og ulike påvirkninger klima har på reiselivet. Endringskapasitet er et sentralt begrep i denne oppgaven. Det presenteres også teori om to psykologiske faktorer som virker viktige for å møte klimaendringer på en effektiv måte. Det metodiske arbeidet er basert på kvalitative dybdeintervju av tre aktivitetsbedrifter og to overnattingsbedrifter. Funnene og analysen belyser endringskapasiteten til de ulike bedriftene. I tillegg kartlegges det om de opplever klimapåvirkning, og om de er motivert eller har tro på at effektiv omstilling til klimaendringer er mulig for deres bedrift. Oppgaven viser at alle bedriftene kontinuerlig gjør små og store endringer. De har alle i ulik grad en endringskapasitet, men det er aktivitetsbedriftene som kan vise til størst evne til å balansere endring og stabilitet generelt. Alle bedriftene opplever at klima er en ekstern drivkraft til endring. Videre indikerer funnene at to aktivitetsbedrifter har liten tro på at effektiv omstilling er mulig, mens de to overnattingsbedriftene og den ene aktivitetsbedriften har stor tro. Inntrykket vi sitter igjen med er at selv om bedriftene har stor endringskapasitet, så betyr det ikke nødvendigvis at denne kapasiteten realiseres i møte med klimaendringer. Det er i oppgaven foreslått konkrete forslag til forbedringer for de enkelte bedriftene

    Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses

    Get PDF
    AbstractEarlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNT's brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made

    Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells In Vitro and In Vivo

    No full text
    In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly (lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilising polyethylene glycol (PEG) as a spacer. Characterisation of the conjugates was performed using FTIR and 1H-NMR studies. The PEG and Folic acid content was independent on the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule, moreover, Zeta potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anti-cancer drugs in vivo
    corecore