8 research outputs found

    Accuracy and Performance Comparison of Video Action Recognition Approaches

    Full text link
    Over the past few years, there has been significant interest in video action recognition systems and models. However, direct comparison of accuracy and computational performance results remain clouded by differing training environments, hardware specifications, hyperparameters, pipelines, and inference methods. This article provides a direct comparison between fourteen off-the-shelf and state-of-the-art models by ensuring consistency in these training characteristics in order to provide readers with a meaningful comparison across different types of video action recognition algorithms. Accuracy of the models is evaluated using standard Top-1 and Top-5 accuracy metrics in addition to a proposed new accuracy metric. Additionally, we compare computational performance of distributed training from two to sixty-four GPUs on a state-of-the-art HPC system.Comment: Accepted for publication at IEEE HPEC 202

    Multi-Temporal Analysis and Scaling Relations of 100,000,000,000 Network Packets

    Full text link
    Our society has never been more dependent on computer networks. Effective utilization of networks requires a detailed understanding of the normal background behaviors of network traffic. Large-scale measurements of networks are computationally challenging. Building on prior work in interactive supercomputing and GraphBLAS hypersparse hierarchical traffic matrices, we have developed an efficient method for computing a wide variety of streaming network quantities on diverse time scales. Applying these methods to 100,000,000,000 anonymized source-destination pairs collected at a network gateway reveals many previously unobserved scaling relationships. These observations provide new insights into normal network background traffic that could be used for anomaly detection, AI feature engineering, and testing theoretical models of streaming networks.Comment: 6 pages, 6 figures,3 tables, 49 references, accepted to IEEE HPEC 202

    Deployment of Real-Time Network Traffic Analysis using GraphBLAS Hypersparse Matrices and D4M Associative Arrays

    Full text link
    Matrix/array analysis of networks can provide significant insight into their behavior and aid in their operation and protection. Prior work has demonstrated the analytic, performance, and compression capabilities of GraphBLAS (graphblas.org) hypersparse matrices and D4M (d4m.mit.edu) associative arrays (a mathematical superset of matrices). Obtaining the benefits of these capabilities requires integrating them into operational systems, which comes with its own unique challenges. This paper describes two examples of real-time operational implementations. First, is an operational GraphBLAS implementation that constructs anonymized hypersparse matrices on a high-bandwidth network tap. Second, is an operational D4M implementation that analyzes daily cloud gateway logs. The architectures of these implementations are presented. Detailed measurements of the resources and the performance are collected and analyzed. The implementations are capable of meeting their operational requirements using modest computational resources (a couple of processing cores). GraphBLAS is well-suited for low-level analysis of high-bandwidth connections with relatively structured network data. D4M is well-suited for higher-level analysis of more unstructured data. This work demonstrates that these technologies can be implemented in operational settings.Comment: Accepted to IEEE HPEC, 8 pages, 8 figures, 1 table, 69 references. arXiv admin note: text overlap with arXiv:2203.13934. text overlap with arXiv:2309.0180

    Focusing and Calibration of Large Scale Network Sensors using GraphBLAS Anonymized Hypersparse Matrices

    Full text link
    Defending community-owned cyber space requires community-based efforts. Large-scale network observations that uphold the highest regard for privacy are key to protecting our shared cyberspace. Deployment of the necessary network sensors requires careful sensor placement, focusing, and calibration with significant volumes of network observations. This paper demonstrates novel focusing and calibration procedures on a multi-billion packet dataset using high-performance GraphBLAS anonymized hypersparse matrices. The run-time performance on a real-world data set confirms previously observed real-time processing rates for high-bandwidth links while achieving significant data compression. The output of the analysis demonstrates the effectiveness of these procedures at focusing the traffic matrix and revealing the underlying stable heavy-tail statistical distributions that are necessary for anomaly detection. A simple model of the corresponding probability of detection (pdp_{\rm d}) and probability of false alarm (pfap_{\rm fa}) for these distributions highlights the criticality of network sensor focusing and calibration. Once a sensor is properly focused and calibrated it is then in a position to carry out two of the central tenets of good cybersecurity: (1) continuous observation of the network and (2) minimizing unbrokered network connections.Comment: Accepted to IEEE HPEC, 9 pages, 12 figures, 1 table, 63 references, 2 appendice

    More Heat than Light: Census-Scale Evidence for the Relationship between Ethnic Diversity and Economic Development as a Statistical Artifact

    No full text
    corecore