3 research outputs found

    Preparation and Characterisation of Nobiletin-Loaded Nanostructured Lipid Carriers

    Get PDF
    The objective of this manuscript was to investigate and optimise the potential of nanostructured lipid carriers (NLCs) as a carrier system for nobiletin (NOB), which was prepared by high-pressure homogenisation method. Additionally, this study was focused on the application of NOB-loaded NLC (NOB-NLC) in functional food. Response surface method with a three-level Box–Behnken design was validated through analysis of variance, and the robustness of the design was confirmed through the correspondence between the values measured in the experiments and the predicted ones. Properties of the prepared NOB-NLC, such as Z-average, polydispersity, entrapment efficiency, zeta potential, morphology, and crystallinity, were investigated. NOB-NLC exhibited a spherical shape with a diameter of 112.27 ± 5.33 nm, zeta potential of −35.1 ± 2.94 mV, a polydispersity index of 0.251 ± 0.058, and an EE of 81.06%  ±  6.02%. Results from X-ray diffraction and differential scanning calorimetry of NOB-NLC reviewed that the NOB crystal might be converted to an amorphous state. Fourier transform infrared spectroscopic analysis demonstrated that chemical interaction was absent between the compound and lipid mixture in NOB-NLC

    Effect of Trilobatin from Lithocarpus polystachyus Rehd on Gut Microbiota of Obese Rats Induced by a High-Fat Diet

    No full text
    Trilobatin was identified as the primary bioactive component in the Lithocarpus polystachyus Rehd (LPR) leaves. This study explored the antiobesity effect of trilobatin from LPR leaves and its influence on gut microbiota in obese rats. Results showed that trilobatin could significantly reduce body and liver weight gain induced by a high-fat diet, and the accumulation of perirenal fat, epididymal fat, and brown fat of SD (Male Sprague–Dawley) obese rats in a dose-independent manner. Short-chain fatty acids (SCFAs) concentrations increased, especially the concentration of butyrate. Trilobatin supplementation could significantly increase the relative abundance of Lactobacillus, Prevotella, CF231, Bacteroides, and Oscillospira, and decrease greatly the abundance of Blautia, Allobaculum, Phascolarctobacterium, and Coprococcus, resulting in an increase of the ratio of Bacteroidetes to Firmicutes (except the genera of Lactobacillus and Oscillospira). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway predicted by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) indicated the different relative metabolic pathways after trilobatin supplementation. This study may reveal the contribution of gut microbiota to the antiobesity effect of trilobatin from LPR leaves and predict the potential regulatory mechanism for obesity induced by a high-fat diet
    corecore