15 research outputs found

    Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    Get PDF
    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ 13 C and δ 15 N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ 15 N (trophic position) were evident between all three species, with size-based and temporal shifts in δ 15 N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models

    Anthropogenic noise predicts sea turtle behavioural responses

    No full text
    Anthropogenic noise is a pollutant of global concern. While the effects of underwater noise pollution have been frequently studied in fish and mammals, our understanding of how this anthropogenic stressor affects marine reptiles is scant. Using a multichannel data logger equipped with a camera and hydrophone, we quantified behavioural responses of a free-ranging green turtle (Chelonia mydas) to vessel noise in the Galapagos Archipelago, an important nesting site in the eastern Pacific. We found that while travelling the turtle increased its vigilance with increasing vessel noise. However, when on the seabed the turtle did not increase its vigilance with increasing noise levels. Our findings illustrate that noise pollution has the potential to alter overall time budgets of animals. Identifying real-time responses of wild animals illustrate how in situ approaches allow to assess the effects of human activities on marine systems.</p

    Diet of the European Shag Gulosus aristotelis during the non-breeding season at a roost within a tidal channel

    No full text
    The diet of the European Shag Gulosus aristotelis was assessed at one of their most northerly roosts in the UK; Bluemull Sound, Shetland. One pellet and 40 faecal samples were collected during the non-breeding season. The most frequent prey was Velvet Swimming Crab Necora puber, while the highest number of otoliths were from Saithe Pollachius virens and estimated mean (±sd) fish length was 143.9 ± 66.9 mm (range 81.4–223.6 mm).</p

    Identifying optimal feeding habitat and proposed Marine Protected Areas (pMPAs) for the black-legged kittiwake (Rissa tridactyla) suggests a need for complementary management approaches

    No full text
    Marine Protected Areas (MPAs) are an important conservation tool. For marine predators, recent research has focused on the use of Species Distribution Models (SDMs) to identify proposed sites. We used a maximum entropy modelling approach based on static and dynamic oceanographic parameters to determine optimal feeding habitat for black-legged kittiwakes (Rissa tridactyla) at two colonies during two consecutive breeding seasons (2009 and 2010). A combination of Geographic Positioning System (GPS) loggers and Time-Depth Recorders (TDRs) attributed feeding activity to specific locations. Feeding areas were &lt;30 km from the colony, &lt;40 km from land, in productive waters, 25–175m deep. The predicted extent of optimal habitat declined at both colonies between 2009 and 2010 coincident with declines in reproductive success. Whilst the area of predicted optimal habitat changed, its location was spatially stable between years. There was a close match between observed feeding locations and habitat predicted as optimal at one colony (Lambay Island, Republic of Ireland), but a notable mismatch at the other (Rathlin Island, Northern Ireland). Designation of an MPA at Rathlin may, therefore, be less effective than a similar designation at Lambay perhaps due to the inherent variability in currents and sea state in the North Channel compared to the comparatively stable conditions in the central Irish Sea. Current strategies for designating MPAs do not accommodate likely future redistribution of resources due to climate change. We advocate the development of new approaches including dynamic MPAs that track changes in optimal habitat and non-colony specific ecosystem management
    corecore