4 research outputs found

    Ion-Imprinted Electrochemical Sensor Based on Copper Nanoparticles-Polyaniline Matrix for Nitrate Detection

    No full text
    This study reports a new chemical sensor based on ion-imprinted polymer matrix using copper nanoparticles-polyaniline nanocomposite (IIP-Cu-NPs/PANI). This sensor was prepared by electropolymerization using aniline as a functional monomer and nitrate as template onto the copper nanoparticles-modified glassy carbon (GC) electrode surface. Both ion-imprinted (IIP) and nonimprinted (NIP) electrochemical sensor surfaces were evaluated using UV-Visible spectrometry and scanning electron microscopy (SEM). The electrochemical analysis was made via cyclic voltammetry (CV), linear sweep voltammetry (LSV), and impedance spectroscopy (IS). Throughout this study various analytical parameters, such as scan rate, pH value, concentration of monomer and template, and electropolymerization cycles, were optimized. Under the optimum conditions, the peaks current of nitrate was linear to its concentration in the range of 1μM-0.1M with a detection limit of 31μM and 5μM by EIS and LSV. The developed imprinted nitrate sensor was successfully applied for nitrate determination in different real water samples with acceptable recovery rates

    Identification of compound heterozygous patients with primary hyperoxaluria type 1: clinical evaluations and in silico investigations

    No full text
    Abstract Background Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited disorder of glyoxylate metabolism in which excessive oxalates are formed by the liver and excreted by the kidneys. Calcium oxalate crystallizes in the urine, leading to urolithiasis, nephrocalcinosis, and consequent renal failure if treatment is not initiated promptly. Mutations in the AGXT gene which encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase are responsible of PH1. In the present work, we aimed to analyze AGXT gene and in silico investigations performed in four patients with PH1 among two non consanguineous families. Methods Exhaustive gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools were used to predict the impact of AGXT variants on gene expression as well as on the protein structure and function. Results Direct sequencing of all exons of AGXT gene revealed the emergence of multiple mutations in compound heterozygous state in the two studied families. Two patients were compound heterozygous for the c.731 T > C, c.32C > T, c.1020A > G and c.33_34insC and presented clinically with recurrent urinary tract infection, multiple urolithiasis and nephrocalcinosis under the age of 1 year and a persistent hyperoxaluria at the age of diagnosis. The two other patients presenting a less severe phenotypes were heterozygous for c.731 T > C and homozygous for the c.32C > T and c.1020A > G or compound heterozygous for c.26C > A and c.65A > G variants. Conclusion In Summary, we provided relevance regarding the compound heterozygous mutations in non consanguineous PH1 families with variable severity

    Design and Rationale of the National Tunisian Registry of Heart Failure (NATURE-HF): Protocol for a Multicenter Registry Study

    No full text
    BackgroundThe frequency of heart failure (HF) in Tunisia is on the rise and has now become a public health concern. This is mainly due to an aging Tunisian population (Tunisia has one of the oldest populations in Africa as well as the highest life expectancy in the continent) and an increase in coronary artery disease and hypertension. However, no extensive data are available on demographic characteristics, prognosis, and quality of care of patients with HF in Tunisia (nor in North Africa). ObjectiveThe aim of this study was to analyze, follow, and evaluate patients with HF in a large nation-wide multicenter trial. MethodsA total of 1700 patients with HF diagnosed by the investigator will be included in the National Tunisian Registry of Heart Failure study (NATURE-HF). Patients must visit the cardiology clinic 1, 3, and 12 months after study inclusion. This follow-up is provided by the investigator. All data are collected via the DACIMA Clinical Suite web interface. ResultsAt the end of the study, we will note the occurrence of cardiovascular death (sudden death, coronary artery disease, refractory HF, stroke), death from any cause (cardiovascular and noncardiovascular), and the occurrence of a rehospitalization episode for an HF relapse during the follow-up period. Based on these data, we will evaluate the demographic characteristics of the study patients, the characteristics of pathological antecedents, and symptomatic and clinical features of HF. In addition, we will report the paraclinical examination findings such as the laboratory standard parameters and brain natriuretic peptides, electrocardiogram or 24-hour Holter monitoring, echocardiography, and coronarography. We will also provide a description of the therapeutic environment and therapeutic changes that occur during the 1-year follow-up of patients, adverse events following medical treatment and intervention during the 3- and 12-month follow-up, the evaluation of left ventricular ejection fraction during the 3- and 12-month follow-up, the overall rate of rehospitalization over the 1-year follow-up for an HF relapse, and the rate of rehospitalization during the first 3 months after inclusion into the study. ConclusionsThe NATURE-HF study will fill a significant gap in the dynamic landscape of HF care and research. It will provide unique and necessary data on the management and outcomes of patients with HF. This study will yield the largest contemporary longitudinal cohort of patients with HF in Tunisia. Trial RegistrationClinicalTrials.gov NCT03262675; https://clinicaltrials.gov/ct2/show/NCT03262675 International Registered Report Identifier (IRRID)DERR1-10.2196/1226
    corecore