7 research outputs found

    Gravity Influences How We Expect a Cursor to Move

    No full text
    We expect a cursor to move upwards when we push our computer mouse away. Do we expect it to move upwards on the screen, upwards with respect to our body, or upwards with respect to gravity? To find out, we asked participants to perform a simple task that involved guiding a cursor with a mouse. It took participants that were sitting upright longer to reach targets with the cursor if the screen was tilted, so not only directions on the screen are relevant. Tilted participants’ performance was indistinguishable from that of upright participants when the screen was tilted slightly in the same direction. Thus, the screen's orientation with respect to both the body and gravity are relevant. Considering published estimates of the ocular counter-roll induced by head tilt, it is possible that participants actually expect the cursor to move in a certain direction on their retina

    Charging gold nanoparticles in ZnO by electric fields

    Get PDF
    Controlling the plasmon resonance frequency of metal nanostructures holds promise for both fundamental and applied research in optics. The plasmon resonance frequency depends on the number of free electrons in the metal. By adding or removing electrons to a metal nano-object, the plasmon resonance frequency shifts. In this study we indirectly change the number of free electrons in gold nanoparticles by applying an electrical potential difference over a heterostructure consisting of a ZnO layer with embedded gold nanoparticles. The potential difference induces shifts of defect energy levels in the ZnO by the electric field. This results in an exchange of electrons between particles and matrix which in turn modifies the gold nanoparticle plasmon properties. The positive charge shifts the ZnO optical absorption peak from 377 nm to 386 nm and shifts the nanoparticle plasmon from 549 nm to 542 nm. This electro-optical effect is a promising way to obtain fast optical switching in a solid state composition.journal_title: Journal of Physics: Condensed Matter article_type: paper article_title: Charging gold nanoparticles in ZnO by electric fields copyright_information: © 2016 IOP Publishing Ltd date_received: 2015-09-21 date_accepted: 2015-11-24 date_epub: 2016-01-06status: publishe

    Theta-burst transcranial magnetic stimulation for the treatment of unilateral neglect in stroke patients: A systematic review and best evidence synthesis

    No full text
    Background: Unilateral neglect (UN) is a common and disabling disorder after stroke. UN is a strong and negative predictor of functional rehabilitative outcome. Non-invasive brain stimulation, such as theta-burst transcranial magnetic stimulation (TBS), is a promising rehabilitation technique for treating stroke-induced UN. Objective: To systematically review the available literature, researching whether TBS of the contra-lesional hemisphere is more effective than standard rehabilitation in improving symptoms of UN in patients with right hemisphere stroke. Review methods: A systematic review was conducted to retrieve randomized controlled trials (RCTs) that were relevant to the objective of this review. PubMed, Ovid and Cochrane Library electronic databases were comprehensively searched from inception up to February 2021. Of the included studies, methodological quality was assessed using the PEDro scale, whereafter a best evidence synthesis (BES) was conducted to summarize the results. Results: Nine RCTs investigating the effects of TBS on stroke-induced UN symptoms were included in this review. Seven studies assessing continuous TBS (cTBS) found significantly greater amelioration of UN symptoms in the TBS intervention group when compared to the control group; one study assessing cTBS found no such significant difference. One study assessing intermittent TBS (iTBS) found significant between-group differences in favor of the intervention. The BES yielded strong evidence in favor of cTBS, and limited evidence in favor of iTBS. Conclusions: The included studies in the present review allow the conclusion that TBS can have favorable effects on UN recovery in stroke patients. Its clinical use is recommended in conjunction with cognitive rehabilitation and occupational or physical rehabilitation as needed. However, many aspects for optimal usage of TBS therapy in clinical settings, such as exact TBS protocols, number of sessions, and treatment duration, are not clear

    Literatur

    No full text

    Literaturverzeichnis

    No full text
    corecore