3 research outputs found

    Reconstructed springtime (March–June) precipitation tracked by tree rings dating back to 1760 CE in the Qinling-Bashan mountainous area

    Get PDF
    In recent decades, considerable advances have been made in dendroclimatic reconstruction in the eastern monsoon region of China. However, understanding of long-term hydroclimatic changes has not been comprehensive due to the complexity of the regional geography in China's north-south transitional zone. Growth-climate response analysis indicated that springtime precipitation is the main factor limiting the radial growth of pine trees in the Qinling-Bashan mountainous area. Based on the three tree ring chronologies distributed in the southeast of Shaanxi Province, we developed a March–June precipitation reconstruction spanning 1760–2020 CE for the Qinling-Bashan mountainous area. Precipitation reconstruction accounts for 40.6% of the total precipitation variance during the instrumental period 1955–2016. Spatial correlation analysis indicated that the precipitation reconstruction recorded similar common precipitation signals for the eastern Qinling Mountains and the Yangtze-Huai River Basin. The results of the superposed epoch analysis (SEA) revealed that low precipitation was one of the main causes of severe drought and locust plague events. The preliminary synoptic climatology analysis showed that our reconstructed precipitation is closely linked to the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) variability.Fil: Wang, Shijie. Yunnan University; ChinaFil: Man, Wenmin. Chinese Academy of Sciences; República de ChinaFil: Chen, Feng. Yunnan University; China. China Meteorological Administration; ChinaFil: Chen, Youping. Yunnan University; ChinaFil: Yu, Shulong. China Meteorological Administration; ChinaFil: Cao, Honghua. Yunnan University; ChinaFil: Hu, Mao. Yunnan University; ChinaFil: Hou, Tiyuan. Yunnan University; ChinaFil: Hadad, Martín Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Mayor; Chil

    Patterns and relationships of plant traits, community structural attributes, and eco-hydrological functions during a subtropical secondary succession in central Yunnan, Southwest China

    Get PDF
    Human-induced changes in land use lead to major changes in plant community composition and structure which have strong effects on eco-hydrological processes and functions. We here tested the hypothesis that changes in traits of living plants have resulted in changes in structural attributes of the community that influenced eco-hydrological functions by altering eco-hydrological processes. This was done in the context of a subtropical secondary forest suc­cession following land abandonment in Central Yunnan (Southwest China). During the succession, species with high specific leaf area (SLA), high leaf nitrogen concentration (LNC), high specific root length (SRL), and low leaf dry matter content (LDMC) were progressively replaced by species with the opposite characteristics. The obtained results of correlation analyses were as follows: (1) Correlations were significant between community-aggregated SLA, LNC, and the leaf area index (LAI). Significant correlations were detected between LAI, canopy interception and stemflow, and surface runoff and soil erosion. (2) Significant correlations were also found between community-aggregated SLA, LNC, LDMC, and accumulated litter biomass. High accumulated litter biomass strongly increases the maximum water-retaining capac­ity of litter. However, significant correlations were not found between the maximum water-retaining capacity of litter and surface runoff and soil erosion. (3) Correlations were significant between community-aggregated SLA, LNC, and fine root biomass. Fine root biomass was not significantly related to the maximum water-retaining capacity of the soil, but was significantly related to surface runoff and soil erosion. These results suggest that canopy characteristics play a more important role in control of runoff and soil erosion at the studied site. It follows that plant functional traits are closely linked with canopy characteristics, which should be used as a standard for selecting species in restoration and revegetation for water and soil conservation

    PATTERNS AND RELATIONSHIPS OF PLANT TRAITS, COMMUNITY STRUCTURAL ATTRIBUTES, AND ECO-HYDROLOGICAL FUNCTIONS DURING A SUBTROPICAL SECONDARY SUCCESSION IN CENTRAL YUNNAN (SOUTHWEST CHINA)

    No full text
    Abstract —Human-induced changes in land use lead to major changes in plant community composition and structure which have strong effects on eco-hydrological processes and functions. We here tested the hypothesis that changes in traits of living plants have resulted in changes in structural attributes of the community that influenced eco-hydrological functions by altering eco-hydrological processes. This was done in the context of a subtropical secondary forest succession following land abandonment in Central Yunnan (Southwest China). During the succession, species with hig
    corecore