28,033 research outputs found
Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models
We study the preconditioning of Markov chain Monte Carlo (MCMC) methods using coarse-scale models with applications to subsurface characterization. The purpose of preconditioning is to reduce the fine-scale computational cost and increase the acceptance rate in the MCMC sampling. This goal is achieved by generating Markov chains based on two-stage computations. In the first stage, a new proposal is first tested by the coarse-scale model based on multiscale finite volume methods. The full fine-scale computation will be conducted only if the proposal passes the coarse-scale screening. For more efficient simulations, an approximation of the full fine-scale computation using precomputed multiscale basis functions can also be used. Comparing with the regular MCMC method, the preconditioned MCMC method generates a modified Markov chain by incorporating the coarse-scale information of the problem. The conditions under which the modified Markov chain will converge to the correct posterior distribution are stated in the paper. The validity of these assumptions for our application and the conditions which would guarantee a high acceptance rate are also discussed. We would like to note that coarse-scale models used in the simulations need to be inexpensive but not necessarily very accurate, as our analysis and numerical simulations demonstrate. We present numerical examples for sampling permeability fields using two-point geostatistics. The Karhunen--Loève expansion is used to represent the realizations of the permeability field conditioned to the dynamic data, such as production data, as well as some static data. Our numerical examples show that the acceptance rate can be increased by more than 10 times if MCMC simulations are preconditioned using coarse-scale models
FHL2 regulates hematopoietic stem cell functions under stress conditions.
FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated downregulation of cyclin-dependent kinase-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under the control of a tissue-specific promoter in hematopoietic cells and it is downregulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that downregulation of FHL2 frequently occurs in myelodysplastic syndrome and acute myeloid leukemia patients, raising a possibility that FHL2 downregulation has a role in the pathogenesis of myeloid malignancies
Fermi resonance-algebraic model for molecular vibrational spectra
A Fermi resonance-algebraic model is proposed for molecular vibrations, where
a U(2) algebra is used for describing the vibrations of each bond, and Fermi
resonances between stretching and bending modes are taken into account. The
model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to
fit the recently observed vibrational spectrum of the water molecule and arsine
(AsH_3), respectively, and results are compared with those of other models.
Calculations show that algebraic approaches can be used as an effective method
for describing molecular vibrations with small standard deviations
Four Statements about the Fourth Generation
This summary of the Workshop "Beyond the 3-generation SM in the LHC era"
presents a brief discussion of the following four statements about the fourth
generation: 1) It is not excluded by EW precision data; 2) It addresses some of
the currently open questions; 3) It can accommodate emerging possible hints of
new physics; 4) LHC has the potential to discover or fully exclude it.Comment: Summary of the "Beyond the 3-generation SM in the LHC era" Workshop,
CERN, September 4-5, 2008; 7 pages. V2: updated bibliography and minor typos
fixed. To appear in PMC Physics
The shape of disorder broadened Landau subbands in graphene
Density of states (DOS) of graphene under a high uniform magnetic field and
white-noise random potential is numerically calculated. The disorder broadened
zero-energy Landau band has a Gaussian shape whose width is proportional to the
random potential variance and the square root of magnetic field. Wegner-type
calculation is used to justify the results
q-deformed Supersymmetric t-J Model with a Boundary
The q-deformed supersymmetric t-J model on a semi-infinite lattice is
diagonalized by using the level-one vertex operators of the quantum affine
superalgebra . We give the bosonization of the boundary
states. We give an integral expression of the correlation functions of the
boundary model, and derive the difference equations which they satisfy.Comment: LaTex file 18 page
Window on Higgs Boson: Fourth Generation Decays Revisited
Direct and indirect searches of the Higgs boson suggest that 113 GeV
170 GeV is likely. With the LEP era over and the
Tevatron Run II search via arduous, we revisit a case where
or jets could arise via strong pair
production. In contrast to 10 years ago, the tight electroweak constraint on
-- (hence --) splitting reduces FCNC
, rates, making naturally competitive.
Such a "cocktail solution" is precisely the mix that could evade the CDF search
for , and the may well be lurking below the top. In
light of the Higgs program, this two-in-one strategy should be pursued.Comment: 4 pages, RevTex, 4 eps figures, One more figure, version to be
published in Phys. Rev.
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
Higgs Phenomenology in Warped Extra-Dimensions with a 4th Generation
We study a warped extra-dimension scenario where the Standard Model fields
lie in the bulk, with the addition of a fourth family of fermions. We
concentrate on the flavor structure of the Higgs couplings with fermions in the
flavor anarchy ansatz. Even without a fourth family, these couplings will be
generically misaligned with respect to the SM fermion mass matrices. The
presence of the fourth family typically enhances the misalignment effects and
we show that one should expect them to be highly non-symmetrical in the
inter-generational mixing. The radiative corrections from the new
fermions and their flavor violating couplings to the Higgs affect negligibly
known experimental precision measurements such as the oblique parameters and
or . On the other hand,
processes, mediated by tree-level Higgs exchange, as well as radiative
corrections to and put some generic pressure
on the allowed size of the flavor violating couplings. But more importantly,
these couplings will alter the Higgs decay patterns as well as those of the new
fermions, and produce very interesting new signals associated to Higgs
phenomenology in high energy colliders. These might become very important
indirect signals for these type of models as they would be present even when
the KK mass scale is high and no heavy KK particle is discovered.Comment: 39 pages, 6 figure
- …