3,380 research outputs found

    Quadrupole Susceptibility of Gd-Based Filled Skutterudite Compounds

    Full text link
    It is shown that quadrupole susceptibility can be detected in Gd compounds contrary to our textbook knowledge that Gd3+^{3+} ion induces pure spin moment due to the Hund's rules in an LSLS coupling scheme. The ground-state multiplet of Gd3+^{3+} is always characterized by JJ=7/2, where JJ denotes total angular momentum, but in a jj-jj coupling scheme, one ff electron in jj=7/2 octet carries quadrupole moment, while other six electrons fully occupy jj=5/2 sextet, where jj denotes one-electron total angular momentum. For realistic values of Coulomb interaction and spin-orbit coupling, the ground-state wavefunction is found to contain significant amount of the jj-jj coupling component. From the evaluation of quadrupole susceptibility in a simple mean-field approximation, we point out a possibility to detect the softening of elastic constant in Gd-based filled skutterudites.Comment: 8 pages, 4 figure

    Electric Dipolar Susceptibility of the Anderson-Holstein Model

    Full text link
    The temperature dependence of electric dipolar susceptibility \chi_P is discussed on the basis of the Anderson-Holstein model with the use of a numerical renormalization group (NRG) technique. Note that P is related with phonon Green's function D. In order to obtain correct temperature dependence of P at low temperatures, we propose a method to evaluate P through the Dyson equation from charge susceptibility \chi_c calculated by the NRG, in contrast to the direct NRG calculation of D. We find that the irreducible charge susceptibility estimated from \chi_c agree with the perturbation calculation, suggesting that our method works well.Comment: 4 pages, 4 figure

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    Generation of twist on magnetic flux tubes at the base of the solar convection zone

    Full text link
    Using two-dimensional magnetohydrodynamics calculations, we investigate a twist gen- eration mechanism on a magnetic flux tube at the base of the solar convection zone based on the idea of Choudhuri, 2003, Sol. Phys., 215, 31 in which a toroidal mag- netic field is wrapped by a surrounding mean poloidal field. During generation of the twist, the flux tube follows four phases. (1) It quickly splits into two parts with vortex motions rolling up the poloidal magnetic field. (2) Owing to the physical mechanism similar to that of the magneto-rotational instability, the rolled-up poloidal field is bent and amplified. (3) The magnetic tension of the disturbed poloidal magnetic field re- duces the vorticity, and the lifting force caused by vortical motion decreases. (4) The flux tube gets twisted and begins to rise again without splitting. Investigation of these processes is significant because it shows that a flux tube without any initial twist can rise to the surface in relatively weak poloidal fields.Comment: 10 pages, 6 figur

    Singular Vertices in the Strong Coupling Phase of Four-Dimensional Simplicial Gravity

    Get PDF
    We study four-dimensional simplicial gravity through numerical simulation with special attention to the existence of singular vertices, in the strong coupling phase, that are shared by abnormally large numbers of four-simplices. We attempt to cure this disease by adding a term to the action which suppresses such singular vertices. For a sufficiently large coefficient of the additional term, however, the phase transition disappears and the system is observed to be always in the branched polymer phase for any gravitational constant.Comment: 11 pages, 7 Postscript figure

    Electron Mass Enhancement due to Anharmonic Local Phonons

    Full text link
    In order to understand how electron effective mass is enhanced by anharmonic local oscillation of an atom in a cage composed of other atoms, i.e., {\it rattling}, we analyze anharmonic Holstein model by using a Green's function method. Due to the evaluation of an electron mass enhancement factor ZZ, we find that ZZ becomes maximum when zero-point energy is comparable with potential height at which the amplitude of oscillation is rapidly enlarged. Cooperation of such quantum and rattling effects is considered to be a key issue to explain the electron mass enhancement in electron-rattling systems.Comment: 3 pages, 3 figures, to appear in J. Phys. Soc. Jpn. Suppl. (Proceedings for International Conference on Heavy Electrons

    Nonabelian Duality and Higgs Multiplets in Supersymmetric Grand Unified Theories

    Get PDF
    We consider strongly interacting supersymmetric gauge theories which break dynamically the GUT symmetry and produce the light Higgs doublets naturally. Two models we proposed in the previous articles are reanalyzed as two phases of one theory and are shown to have desired features. Furthermore, employing nonabelian duality proposed recently by Seiberg, we study the dual theory of the above one and show that the low-energy physics of the original and dual models are the same as expected. We note that the Higgs multiplets in the original model are regarded as composite states of the elementary hyperquarks in its dual theory. Theories with other hypercolors and similar matter contents are also analyzed in the same way.Comment: 16 pages, LaTeX, no figur

    Multipole as ff-Electron Spin-Charge Density in Filled Skutterudites

    Full text link
    It is shown that ff-electron multipole is naturally defined as spin-charge one-electron density operator in the second-quantized form with the use of tensor operator on the analogy of multipole expansion of electromagnetic potential from charge distribution in electromagnetism. Due to this definition of multipole, it is possible to determine multipole state from a microscopic viewpoint on the basis of the standard linear response theory for multipole susceptibility. In order to discuss multipole properties of filled skutterudites, we analyze a seven-orbital impurity Anderson model by employing a numerical renormalization group method. We show our results on possible multipole states of filled skutterudite compounds.Comment: To appear in the Proceedings of International Conference on "New Quantum Phenomena in Skutterudite and Related Systems" (September 2007, Kobe, Japan
    corecore