2,426 research outputs found

    Filling dependence of a new type of charge ordered liquid on a triangular lattice system

    Full text link
    We study the recently reported characteristic gapless charge ordered state in a spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions. In this state the charges are spontaneously divided into solid and liquid component, and the former solid part aligns in a Wigner crystal manner while the latter moves among them like a pinball. We show that such charge ordered liquid is stable over a wide range of filling, 1/3<n<2/31/3<n<2/3, and examine its filling dependent nature.Comment: 3 pages 3 figure

    Quantum Energy Teleportation with Electromagnetic Field: Discrete vs. Continuous Variables

    Full text link
    It is well known that usual quantum teleportation protocols cannot transport energy. Recently, new protocols called quantum energy teleportation (QET) have been proposed, which transport energy by local operations and classical communication with the ground states of many-body quantum systems. In this paper, we compare two different QET protocols for transporting energy with electromagnetic field. In the first protocol, a 1/2 spin (a qubit) is coupled with the quantum fluctuation in the vacuum state and measured in order to obtain one-bit information about the fluctuation for the teleportation. In the second protocol, a harmonic oscillator is coupled with the fluctuation and measured in order to obtain continuous-variable information about the fluctuation. In the spin protocol, the amount of teleported energy is suppressed by an exponential damping factor when the amount of input energy increases. This suppression factor becomes power damping in the case of the harmonic oscillator protocol. Therefore, it is concluded that obtaining more information about the quantum fluctuation leads to teleporting more energy. This result suggests a profound relationship between energy and quantum information.Comment: 24 pages, 4 figures, to be published in Journal of Physics A: Mathematical and Theoretica

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    Monte Carlo Studies of the Dimensionally Reduced 4d SU(N) Super Yang-Mills Theory

    Get PDF
    We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU(N) super Yang-Mills theory. The model is well defined for finite N and it is found that the large N limit obtained by keeping g^2 N fixed gives rise to well defined operators which represent string amplitudes. The space-time structure which arises dynamically from the eigenvalues of the bosonic matrices is discussed, as well as the effect of supersymmetry on the dynamical properties of the model. Eguchi-Kawai equivalence of this model to ordinary gauge theory does hold within a finite range of scale. We report on new simulations of the bosonic model for N up to 768 that confirm this property, which comes as a surprise since no quenching or twist is introduced.Comment: 6 pages, 7 figures, Talk presented by K.N.A. at the HEP 2000 Annual Workshop of the Hellenic Society for the Study of High Energy Physics at the University of Ioannina. References added, minor correction

    Large N Dynamics of Dimensionally Reduced 4D SU(N) Super Yang-Mills Theory

    Get PDF
    We perform Monte Carlo simulations of a supersymmetric matrix model, which is obtained by dimensional reduction of 4D SU(N) super Yang-Mills theory. The model can be considered as a four-dimensional counterpart of the IIB matrix model. We extract the space-time structure represented by the eigenvalues of bosonic matrices. In particular we compare the large N behavior of the space-time extent with the result obtained from a low energy effective theory. We measure various Wilson loop correlators which represent string amplitudes and we observe a nontrivial universal scaling in N. We also observe that the Eguchi-Kawai equivalence to ordinary gauge theory does hold at least within a finite range of scale. Comparison with the results for the bosonic case clarifies the role of supersymmetry in the large N dynamics. It does affect the multi-point correlators qualitatively, but the Eguchi-Kawai equivalence is observed even in the bosonic case.Comment: 35 pages, 17 figure

    Scaling Behavior in 4D Simplicial Quantum Gravity

    Get PDF
    Scaling relations in four-dimensional simplicial quantum gravity are proposed using the concept of the geodesic distance. Based on the analogy of a loop length distribution in the two-dimensional case, the scaling relations of the boundary volume distribution in four dimensions are discussed in three regions: the strong-coupling phase, the critical point and the weak-coupling phase. In each phase a different scaling behavior is found.Comment: 12 pages, latex, 10 postscript figures, uses psfig.sty and cite.st

    Universal temperature dependence of the magnetization of gapped spin chains

    Full text link
    Temperature dependence of the magnetization of the Haldane spin chain at finite magnetic field is analyzed systematically. Quantum Monte Carlo data indicates a clear minimum of magnetization as a function of temperature in the gapless regime. On the basis of the Tomonaga-Luttinger liquid theory, we argue that this minimum is rather universal and can be observed for general axially symmetric quasi-one-dimensional spin systems. Our argument is confirmed by the magnetic-field dependence of the spin-wave velocity obtained numerically. One can estimate a magnitude of the gap of any such systems by fitting the experimental data with the magnetization minimum.Comment: 9 pages, 7 figure

    Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Get PDF
    Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies

    Structure and magnetism in nanocrystalline Ca(La)B6_6 films

    Full text link
    Nanocrystalline films of La-doped CaB6_6 have been fabricated by using a rf-magnetron sputtering. Lattice expansion of up to 6% with respect to the bulk value was observed along the direction perpendicular to the film plane, which arises from the trapping of Ar gas into the film. Large ferromagnetic moment of 3 ~ 4 Bohr magneton per La has been observed in some La-doped films only when the lattice expansion rate is larger than 2.5%.Comment: 2 pages, 2 figures, to appear in J. Magn. Magn. Mate

    Usefulness of Real-Time 4D Ultrasonography during Radiofrequency Ablation in a Case of Hepatocellular Carcinoma

    Get PDF
    We report a case of hepatocellular carcinoma (HCC) with chronic hepatitis C virus infection successfully treated with percutaneous radiofrequency ablation (RFA) under live four-dimensional (4D) echo guidance. A 65-year-old Japanese man had a HCC nodule in the liver S5 region 2.0 cm in diameter. We performed real-time 4D ultrasonography during RFA therapy with a LeVeen needle electrode. The echo guidance facilitated an accurate approach for the needle puncture. The guidance was also useful for confirming whether an adequate safety margin for the nodule had been obtained. Thus real-time 4D ultrasonography echo technique appears to provide safe guidance of RFA needles via accurate targeting of HCC nodules, thereby allowing real-time visualization when combined with echo contrast. Furthermore the position of the needle in a still image was confirmed in every area using a multiview procedure
    • …
    corecore